燃料化学学报
燃料化學學報
연료화학학보
JOURNAL OF FUEL CHEMISTRY AND TECHNOLOGY
2014年
4期
481-486
,共6页
赵煜%马彦%李婷%薄晓%王俊文%李鹏%钟丽萍%孙彦平
趙煜%馬彥%李婷%薄曉%王俊文%李鵬%鐘麗萍%孫彥平
조욱%마언%리정%박효%왕준문%리붕%종려평%손언평
生物燃料电池%浓度%温度%动力学
生物燃料電池%濃度%溫度%動力學
생물연료전지%농도%온도%동역학
microbial fuel cell%concentration%temperature%kinetics
以某生活污水处理厂缺氧池活性污泥为接种体,以葡萄糖为模拟生活废水,构建双室型微生物燃料电池。利用微生物燃料电池( MFC,Microbial fuel cell)实现生活废水降解与同步产电。研究基质降解动力学及温度对MFC电极过程动力学的影响,明确微生物电化学活性、阳极传荷阻抗、阳极电势、电池产能之间的关系,考察库伦效率及COD去除率。研究结果表明,电池功率输出与基质浓度关系遵循莫顿动力学方程:P=Pmaxc/(ks+c),其中,半饱和常数ks 为138.5 mg/L,最大功率密度Pmax为320.2 mW/m2。葡萄糖浓度较小时,反应遵循一级动力学规律:-dcA/dt=kcA ,k=0.262 h-1。操作温度从20益提高到35益,生物膜电化学活性不断提高,传荷阻抗从361.2Ω减小到36.2Ω,阳极电极电势不断降低,同时,峰值功率密度从80.6 mW/m2提高到183.3 mW/m2。45益时,产电菌活性降低,峰值功率密度减小到36.8 mW/m2。葡萄糖浓度为1500 mg/L,温度为35益时,MFC电化学性能最佳,稳定运行6 h后库伦效率为44.6%,COD去除率为49.2%。
以某生活汙水處理廠缺氧池活性汙泥為接種體,以葡萄糖為模擬生活廢水,構建雙室型微生物燃料電池。利用微生物燃料電池( MFC,Microbial fuel cell)實現生活廢水降解與同步產電。研究基質降解動力學及溫度對MFC電極過程動力學的影響,明確微生物電化學活性、暘極傳荷阻抗、暘極電勢、電池產能之間的關繫,攷察庫倫效率及COD去除率。研究結果錶明,電池功率輸齣與基質濃度關繫遵循莫頓動力學方程:P=Pmaxc/(ks+c),其中,半飽和常數ks 為138.5 mg/L,最大功率密度Pmax為320.2 mW/m2。葡萄糖濃度較小時,反應遵循一級動力學規律:-dcA/dt=kcA ,k=0.262 h-1。操作溫度從20益提高到35益,生物膜電化學活性不斷提高,傳荷阻抗從361.2Ω減小到36.2Ω,暘極電極電勢不斷降低,同時,峰值功率密度從80.6 mW/m2提高到183.3 mW/m2。45益時,產電菌活性降低,峰值功率密度減小到36.8 mW/m2。葡萄糖濃度為1500 mg/L,溫度為35益時,MFC電化學性能最佳,穩定運行6 h後庫倫效率為44.6%,COD去除率為49.2%。
이모생활오수처리엄결양지활성오니위접충체,이포도당위모의생활폐수,구건쌍실형미생물연료전지。이용미생물연료전지( MFC,Microbial fuel cell)실현생활폐수강해여동보산전。연구기질강해동역학급온도대MFC전겁과정동역학적영향,명학미생물전화학활성、양겁전하조항、양겁전세、전지산능지간적관계,고찰고륜효솔급COD거제솔。연구결과표명,전지공솔수출여기질농도관계준순막돈동역학방정:P=Pmaxc/(ks+c),기중,반포화상수ks 위138.5 mg/L,최대공솔밀도Pmax위320.2 mW/m2。포도당농도교소시,반응준순일급동역학규률:-dcA/dt=kcA ,k=0.262 h-1。조작온도종20익제고도35익,생물막전화학활성불단제고,전하조항종361.2Ω감소도36.2Ω,양겁전겁전세불단강저,동시,봉치공솔밀도종80.6 mW/m2제고도183.3 mW/m2。45익시,산전균활성강저,봉치공솔밀도감소도36.8 mW/m2。포도당농도위1500 mg/L,온도위35익시,MFC전화학성능최가,은정운행6 h후고륜효솔위44.6%,COD거제솔위49.2%。
A microbial fuel cell ( MFC) was built using glucose as simulated domestic wastewater, using carbon felt as anode and activated anaerobic sludge as inoculum, which came from a sewage treatment plant. The sewage was treated and electricity was generated synchronously. The effect of substrate concentration and operating temperature on electrode process kinetics was examined. The relationship among electrochemical activity of microbes, charge transfer resistance, anode potential, and capacity of producing electricity was explored. The main conclusions about sewage-fuel MFC are summarized as follows: The relationship between the peak power density and substrate concentration followed Monod enzyme kinetics equation: P=Pmax c/( ks+c), with a maximum power density ( Pmax ) of 320. 2 mW/m2 and half-saturation concentration ( ks ) of 138. 5 mg/L. When the initial glucose concentration is less than 2 000 mg/L, the reaction follows the first order kinetics equation: -dcA/dt=kcA, k=0. 262 h-1. Increasing the temperature from 20 to 35℃, the charge transfer resistance decreases from 361. 2 to 36. 2 Ω, the anode electrode potential also decreases, while peak power density increases from 80. 6 to 183. 3 mW/m2 . At 45℃, the electrochemical activity of microbes declines, and the peak power density decreases to 36. 8 mW/m2 . After operating steadily for 6 h, coulombic efficiency and COD removal efficiency reach a maximum of 44. 6% and 49. 2%, respectively, at 35℃ with the substrate concentration of 1 500 mg/L.