计算机应用与软件
計算機應用與軟件
계산궤응용여연건
COMPUTER APPLICATIONS AND SOFTWARE
2014年
4期
175-177
,共3页
人脸识别%单训练样本%通用框架学习%Fisher线性判别分析
人臉識彆%單訓練樣本%通用框架學習%Fisher線性判彆分析
인검식별%단훈련양본%통용광가학습%Fisher선성판별분석
Face recognition%Single training sample%General frame learning%Fisher linear discriminant analysis (FLDA)
随着人脸识别技术的不断发展,单样本人脸识别已成为当今的一个热点。针对单样本人脸识别问题,提出一种基于通用框架学习的人脸识别方法。以大量的通用样本与各个单样本按一定比例叠加的方式,增加每个类的训练样本总数,有效地运用 FL-DA 方法进行特征抽取,将所有样本投影到特征子空间,再利用最近邻方法完成人脸识别,一定程度上减轻了人脸的表情、姿态、光照等因素对识别效果的影响,提高了识别率。该方法的有效性分别在 ORL 及 Yale 两大人脸库上得到了验证。
隨著人臉識彆技術的不斷髮展,單樣本人臉識彆已成為噹今的一箇熱點。針對單樣本人臉識彆問題,提齣一種基于通用框架學習的人臉識彆方法。以大量的通用樣本與各箇單樣本按一定比例疊加的方式,增加每箇類的訓練樣本總數,有效地運用 FL-DA 方法進行特徵抽取,將所有樣本投影到特徵子空間,再利用最近鄰方法完成人臉識彆,一定程度上減輕瞭人臉的錶情、姿態、光照等因素對識彆效果的影響,提高瞭識彆率。該方法的有效性分彆在 ORL 及 Yale 兩大人臉庫上得到瞭驗證。
수착인검식별기술적불단발전,단양본인검식별이성위당금적일개열점。침대단양본인검식별문제,제출일충기우통용광가학습적인검식별방법。이대량적통용양본여각개단양본안일정비례첩가적방식,증가매개류적훈련양본총수,유효지운용 FL-DA 방법진행특정추취,장소유양본투영도특정자공간,재이용최근린방법완성인검식별,일정정도상감경료인검적표정、자태、광조등인소대식별효과적영향,제고료식별솔。해방법적유효성분별재 ORL 급 Yale 량대인검고상득도료험증。
With the constant development of face recognition technology,single sample face recognition has become today’s focus.In light of this issue,in the paper we present a face recognition method which is based on general frame learning.The method increases the total number of training samples of every class in the way of superimposing each single sample with a great deal of general samples in certain proportion,effectively utilises FLDA method to extract the features,and maps all the samples onto feature subspace,then makes use of the nearest neighbouring method to complete the face recognition,this mitigates the impacts of those factors including facial expression,attitude,illumination,etc.on recognition effect and raises recognition rate.The effectiveness of the proposed method has been verified on two major face libraries of ORL and Yale respectively.