振动与冲击
振動與遲擊
진동여충격
JOURNAL OF VIBRATION AND SHOCK
2014年
13期
154-160
,共7页
MDOFS%ESDOFS%累积塑性变形能%敏感性分析
MDOFS%ESDOFS%纍積塑性變形能%敏感性分析
MDOFS%ESDOFS%루적소성변형능%민감성분석
MDOFS%ESDOFS%cumulative-plastic deformation energy%sensitivity analysis
为了研究多自由度体系(MDOFS)累积塑性变形能的分布规律,基于能量平衡原理和多模态等效单自由度体系(ESDOFS)的概念,推导了MDOFS累积塑性变形能需求量及其沿结构各层的分配系数。在此基础上,综合考虑地震作用下结构局部破坏或损伤情况,进行了16种工况下的敏感性分析,得出结构各层参数对累积塑性变形能分布的敏感性影响规律。结果表明:累积塑性变形能分配系数主要由质量(mi)、屈服剪力系数(αi)、刚度(ki)和累积延性系数(ηi)四个因素决定;顶层参数变化对累积塑性变形能分布无明显影响;逐层递减和中间层薄弱情况下,各层分配的累积塑性变形能与αi 和ηi 呈正相关,与ki 呈反相关;中间薄弱层释放的累积塑性变形能按其相邻两层原累积塑性变形能大小之比进行重新分配。
為瞭研究多自由度體繫(MDOFS)纍積塑性變形能的分佈規律,基于能量平衡原理和多模態等效單自由度體繫(ESDOFS)的概唸,推導瞭MDOFS纍積塑性變形能需求量及其沿結構各層的分配繫數。在此基礎上,綜閤攷慮地震作用下結構跼部破壞或損傷情況,進行瞭16種工況下的敏感性分析,得齣結構各層參數對纍積塑性變形能分佈的敏感性影響規律。結果錶明:纍積塑性變形能分配繫數主要由質量(mi)、屈服剪力繫數(αi)、剛度(ki)和纍積延性繫數(ηi)四箇因素決定;頂層參數變化對纍積塑性變形能分佈無明顯影響;逐層遞減和中間層薄弱情況下,各層分配的纍積塑性變形能與αi 和ηi 呈正相關,與ki 呈反相關;中間薄弱層釋放的纍積塑性變形能按其相鄰兩層原纍積塑性變形能大小之比進行重新分配。
위료연구다자유도체계(MDOFS)루적소성변형능적분포규률,기우능량평형원리화다모태등효단자유도체계(ESDOFS)적개념,추도료MDOFS루적소성변형능수구량급기연결구각층적분배계수。재차기출상,종합고필지진작용하결구국부파배혹손상정황,진행료16충공황하적민감성분석,득출결구각층삼수대루적소성변형능분포적민감성영향규률。결과표명:루적소성변형능분배계수주요유질량(mi)、굴복전력계수(αi)、강도(ki)화루적연성계수(ηi)사개인소결정;정층삼수변화대루적소성변형능분포무명현영향;축층체감화중간층박약정황하,각층분배적루적소성변형능여αi 화ηi 정정상관,여ki 정반상관;중간박약층석방적루적소성변형능안기상린량층원루적소성변형능대소지비진행중신분배。
To explore the distribution of the cumulative-plastic deformation energy in multi degrees of freedom system (MDOFS),the demand for the cumulative-plastic deformation energy as well as the distribution coefficient along the layers were derived.Furthermore,a sensitivity analysis was carried out under 16 working conditions,taking all the possibilities of local failure or damage into account.And then the sensitivity influencing was discussed.The results show that the distribution coefficient of the cumulative-plastic deformation energy is mainly determined by the gravity(mi ),the yield shear coefficient(αi ),the stiffness(ki )and the cumulative-plastic deformation ratio(ηi ).The top floor parameters have no significant effect on the distribution of the cumulative-plastic deformation energy.In the case of energy decreasing layer by layer or the weak middle floor,the cumulative-plastic deformation energy distribution is positively correlated withαi and ηi ,and negatively correlated with ki ,respectively.The cumulative-plastic deformation energy released from the weak middle floor will be redistributed to the neighboring layers according to the portions of the initial cumulative-plastic deformation energy obtained by these layers.