振动与冲击
振動與遲擊
진동여충격
JOURNAL OF VIBRATION AND SHOCK
2014年
14期
61-65,83
,共6页
孙晓强%陈龙%汪若尘%张孝良%陈月霞
孫曉彊%陳龍%汪若塵%張孝良%陳月霞
손효강%진룡%왕약진%장효량%진월하
滚珠丝杠式惯容器%试验%非线性%遗传BP神经网络%性能预测
滾珠絲槓式慣容器%試驗%非線性%遺傳BP神經網絡%性能預測
곤주사강식관용기%시험%비선성%유전BP신경망락%성능예측
ball-screw inerter%experiment%nonlinearity%GA-BP neural network%performance prediction
在数控液压伺服激振试验台上进行滚珠丝杠式惯容器力学性能试验,获得惯容器在不同惯容系数及不同激振输入下力学响应,通过分析惯容器存在的非线性因素及试验结果,揭示非线性因素影响惯容器的实际性能。考虑建立惯容器自适应神经网络模型,进行惯容器力学性能预测。由于BP算法易陷入局部最优且泛化能力弱,用遗传算法优化BP网络训练过程。基于非线性因素对惯容器力学性能影响机理,选惯容系数及惯容器在多个瞬态时间点位移、速度及加速度为神经网络输入,惯容器输出力为网络输出,并将试验所得1020组数据用于网络训练及预测,网络预测结果与试验结果吻合良好,说明所用方法正确合理,可为惯容器力学性能预测提供参考。
在數控液壓伺服激振試驗檯上進行滾珠絲槓式慣容器力學性能試驗,穫得慣容器在不同慣容繫數及不同激振輸入下力學響應,通過分析慣容器存在的非線性因素及試驗結果,揭示非線性因素影響慣容器的實際性能。攷慮建立慣容器自適應神經網絡模型,進行慣容器力學性能預測。由于BP算法易陷入跼部最優且汎化能力弱,用遺傳算法優化BP網絡訓練過程。基于非線性因素對慣容器力學性能影響機理,選慣容繫數及慣容器在多箇瞬態時間點位移、速度及加速度為神經網絡輸入,慣容器輸齣力為網絡輸齣,併將試驗所得1020組數據用于網絡訓練及預測,網絡預測結果與試驗結果吻閤良好,說明所用方法正確閤理,可為慣容器力學性能預測提供參攷。
재수공액압사복격진시험태상진행곤주사강식관용기역학성능시험,획득관용기재불동관용계수급불동격진수입하역학향응,통과분석관용기존재적비선성인소급시험결과,게시비선성인소영향관용기적실제성능。고필건립관용기자괄응신경망락모형,진행관용기역학성능예측。유우BP산법역함입국부최우차범화능력약,용유전산법우화BP망락훈련과정。기우비선성인소대관용기역학성능영향궤리,선관용계수급관용기재다개순태시간점위이、속도급가속도위신경망락수입,관용기수출력위망락수출,병장시험소득1020조수거용우망락훈련급예측,망락예측결과여시험결과문합량호,설명소용방법정학합리,가위관용기역학성능예측제공삼고。
The testing on ball-screw inerters with different inertances and different excitation inputs was carried out by using a CNC hydraulic servo exciting test-platform.The experimental results show that the dynamic characteristics of inerter are influenced by the nonlinear factors.In order to master the dynamic performance of inerter,a neural network for mechanical properties prediction was constructed.To solve the problem that the BP algorithm is prone to fall into local optimum,the genetic algorithm was used to optimize the training process and improve the generalization ability of the neural network.According to the influencing mechanism of the nonlinear factors on the mechanical properties of inerter, the inertance and the displacement,velocity and acceleration of inerter at multiple transient time points were taken as the input variables of the neural network.1020 groups of test data were used for network training and prediction and the prediction results are in good agreement with the test results.It is shown that the method can be successfully used to predict mechanical properties of inerters.