中国电机工程学报
中國電機工程學報
중국전궤공정학보
ZHONGGUO DIANJI GONGCHENG XUEBAO
2014年
11期
1755-1761
,共7页
郝江涛%于伟%卢平%张宇飞%祝秀明%刘远见
郝江濤%于偉%盧平%張宇飛%祝秀明%劉遠見
학강도%우위%로평%장우비%축수명%류원견
生物质%再燃%高级再燃%脱硝%水蒸气%添加剂
生物質%再燃%高級再燃%脫硝%水蒸氣%添加劑
생물질%재연%고급재연%탈초%수증기%첨가제
biomass%reburning%advanced reburning%NOx removal%water vapor%additive
以稻壳和氨气还原剂为对象,利用携带流脱硝试验装置,研究了再燃区反应温度(T2)、再燃区化学计量比(SR2)、水蒸气含量、添加剂种类与浓度等对生物质再燃/高级再燃脱硝效果的影响。结果表明:随着 T2升高,生物质再燃与高级再燃的脱硝效率呈现不同的趋势,高级再燃下脱硝效率呈现先上升后下降再趋于稳定的趋势,其相应的脱硝窗口温度为950~1100℃。随着SR2降低,稻壳再燃脱硝效率逐渐升高,而高级再燃脱硝效率先增加后降低,最佳 SR2在0.7~0.9之间。随着水蒸气含量增加,生物质再燃/高级再燃脱硝效率均呈现先增加后降低的趋势,水蒸气量为4%左右时脱硝效率最佳。添加剂对生物质再燃/高级再燃脱硝均有一定的促进作用,其中Fe2O3促进作用最为显著,NaOH和Na2CO3次之,KCl和Ca(OH)2的促进作用较差。添加剂浓度(50~150μmol/mol)对脱硝效率的影响不显著,水蒸气与添加剂耦合可显著增加生物质再燃/高级再燃脱硝效率;与无水蒸气和无添加剂相比,4%水蒸气含量与100μmol/mol Na2CO3耦合作用的再燃/高级再燃脱硝效率分别提高13.5%与11.4%。
以稻殼和氨氣還原劑為對象,利用攜帶流脫硝試驗裝置,研究瞭再燃區反應溫度(T2)、再燃區化學計量比(SR2)、水蒸氣含量、添加劑種類與濃度等對生物質再燃/高級再燃脫硝效果的影響。結果錶明:隨著 T2升高,生物質再燃與高級再燃的脫硝效率呈現不同的趨勢,高級再燃下脫硝效率呈現先上升後下降再趨于穩定的趨勢,其相應的脫硝窗口溫度為950~1100℃。隨著SR2降低,稻殼再燃脫硝效率逐漸升高,而高級再燃脫硝效率先增加後降低,最佳 SR2在0.7~0.9之間。隨著水蒸氣含量增加,生物質再燃/高級再燃脫硝效率均呈現先增加後降低的趨勢,水蒸氣量為4%左右時脫硝效率最佳。添加劑對生物質再燃/高級再燃脫硝均有一定的促進作用,其中Fe2O3促進作用最為顯著,NaOH和Na2CO3次之,KCl和Ca(OH)2的促進作用較差。添加劑濃度(50~150μmol/mol)對脫硝效率的影響不顯著,水蒸氣與添加劑耦閤可顯著增加生物質再燃/高級再燃脫硝效率;與無水蒸氣和無添加劑相比,4%水蒸氣含量與100μmol/mol Na2CO3耦閤作用的再燃/高級再燃脫硝效率分彆提高13.5%與11.4%。
이도각화안기환원제위대상,이용휴대류탈초시험장치,연구료재연구반응온도(T2)、재연구화학계량비(SR2)、수증기함량、첨가제충류여농도등대생물질재연/고급재연탈초효과적영향。결과표명:수착 T2승고,생물질재연여고급재연적탈초효솔정현불동적추세,고급재연하탈초효솔정현선상승후하강재추우은정적추세,기상응적탈초창구온도위950~1100℃。수착SR2강저,도각재연탈초효솔축점승고,이고급재연탈초효솔선증가후강저,최가 SR2재0.7~0.9지간。수착수증기함량증가,생물질재연/고급재연탈초효솔균정현선증가후강저적추세,수증기량위4%좌우시탈초효솔최가。첨가제대생물질재연/고급재연탈초균유일정적촉진작용,기중Fe2O3촉진작용최위현저,NaOH화Na2CO3차지,KCl화Ca(OH)2적촉진작용교차。첨가제농도(50~150μmol/mol)대탈초효솔적영향불현저,수증기여첨가제우합가현저증가생물질재연/고급재연탈초효솔;여무수증기화무첨가제상비,4%수증기함량여100μmol/mol Na2CO3우합작용적재연/고급재연탈초효솔분별제고13.5%여11.4%。
NO reduction through reburning (BR)/advanced reburning (AR) with biomass (rice husk, RH) and reducing agent (ammonia) were carried out in an entrained flow reactor (EFR). The effects of reaction temperature in the reburning-zone (T2), stoichiometric ratio in the reburning-zone (SR2), water vapor, and additives, et al. on NO reduction through BR and AR with biomass were analyzed. The results indicate that NO removal efficiencies of biomass BR and AR show different trends with the increase of T2. NO removal efficiency of biomass AR shows a tendency of increasing first, decreasing later and reaching a certain value with the increase of T2, and the temperature window of NO reduction is 950~1 100℃. With the increase of SR2, NO removal efficiency of biomass BR increases gradually, while that of biomass AR shows the pattern of increasing first and decreasing later and the optimal SR2 of AR is in the range of 0.7-0.9. NO removal efficiency of biomass BR and AR shows a tendency of increasing first and decreasing later with the increase of water vapor content, and the best NO removal efficiency is obtained while water vapor is about 4%. Additives have certain promoting effects on NO reduction, in which, the promoting effect of Fe2O3 on NO reduction is the most obvious, followed by NaOH and Na2CO3, and KCl and Ca(OH)2 are the worst. The additive concentration (50~150μmol/mol) has little significant effect on NO reduction. NO reduction through biomass BR and AR can be promoted by the coupling effect of water vapor and additive. Compared with the condition without water vapor and additives, NO removal efficiencies through biomass BR and AR at 4% water vapor and 100 μmol/mol Na2CO3 increase 13.5% and 11.4%, respectively.