中国有色金属学报(英文版)
中國有色金屬學報(英文版)
중국유색금속학보(영문판)
TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
2014年
4期
1046-1052
,共7页
陈亮%韩建宁%周秉文%薛彦燕%贾非%张兴国
陳亮%韓建寧%週秉文%薛彥燕%賈非%張興國
진량%한건저%주병문%설언연%가비%장흥국
Cu-Mg-Te-Y合金%组织%轧制%退火%力学性能%导电率
Cu-Mg-Te-Y閤金%組織%軋製%退火%力學性能%導電率
Cu-Mg-Te-Y합금%조직%알제%퇴화%역학성능%도전솔
Cu-Mg-Te-Y alloy%microstructures%rolling%annealing%mechanical properties%electrical conductivity
研究Cu-Mg-Te-Y合金在铸态、热轧态、冷轧态的组织和元素分布;讨论不同退火温度对Cu-Mg-Te-Y合金组织的改变;分析轧制和退火温度对 Cu-Mg-Te-Y 合金性能的影响。结果表明,不同的轧制工艺获得的合金组织与铸态合金组织相比差别明显,轧制后合金中Mg元素分布比铸态合金的更加均匀,Cu-Mg-Te-Y合金热轧后 Cu2Te 相被挤碎,尺寸变小,分布更加弥散,继续冷轧后 Cu2Te 相则被拉长、压扁,呈细条状。冷轧后的Cu-Mg-Te-Y合金在390°C以下退火1 h,组织变化不明显,在550°C退火1 h后,冷变形产生的纤维状组织发生完全回复再结晶,加工硬化效果消失,抗拉强度大幅度下降,导电率上升。退火温度在360~390°C 范围内, Cu-Mg-Te-Y合金可以获得较好的力学性能。
研究Cu-Mg-Te-Y閤金在鑄態、熱軋態、冷軋態的組織和元素分佈;討論不同退火溫度對Cu-Mg-Te-Y閤金組織的改變;分析軋製和退火溫度對 Cu-Mg-Te-Y 閤金性能的影響。結果錶明,不同的軋製工藝穫得的閤金組織與鑄態閤金組織相比差彆明顯,軋製後閤金中Mg元素分佈比鑄態閤金的更加均勻,Cu-Mg-Te-Y閤金熱軋後 Cu2Te 相被擠碎,呎吋變小,分佈更加瀰散,繼續冷軋後 Cu2Te 相則被拉長、壓扁,呈細條狀。冷軋後的Cu-Mg-Te-Y閤金在390°C以下退火1 h,組織變化不明顯,在550°C退火1 h後,冷變形產生的纖維狀組織髮生完全迴複再結晶,加工硬化效果消失,抗拉彊度大幅度下降,導電率上升。退火溫度在360~390°C 範圍內, Cu-Mg-Te-Y閤金可以穫得較好的力學性能。
연구Cu-Mg-Te-Y합금재주태、열알태、랭알태적조직화원소분포;토론불동퇴화온도대Cu-Mg-Te-Y합금조직적개변;분석알제화퇴화온도대 Cu-Mg-Te-Y 합금성능적영향。결과표명,불동적알제공예획득적합금조직여주태합금조직상비차별명현,알제후합금중Mg원소분포비주태합금적경가균균,Cu-Mg-Te-Y합금열알후 Cu2Te 상피제쇄,척촌변소,분포경가미산,계속랭알후 Cu2Te 상칙피랍장、압편,정세조상。랭알후적Cu-Mg-Te-Y합금재390°C이하퇴화1 h,조직변화불명현,재550°C퇴화1 h후,랭변형산생적섬유상조직발생완전회복재결정,가공경화효과소실,항랍강도대폭도하강,도전솔상승。퇴화온도재360~390°C 범위내, Cu-Mg-Te-Y합금가이획득교호적역학성능。
Microstructures and element distributions of the as-cast, hot-rolled and cold-rolled Cu-Mg-Te-Y alloys were studied. Effects of rolling process and annealing temperature on the properties of the Cu-Mg-Te-Y alloys were correspondingly investigated. The results indicate that the Mg element is homogeneously distributed in the matrix and the fragmentized Cu2Te phase is dispersed in the matrix after hot rolling. Then, the Cu2Te phase is further stretched to strip shape after the cold rolling process. The microstructures of the cold-rolled alloy keep unchanged for the sample annealed below 390 °C for 1 h. However, after annealing at 550 °C for 1 h, the copper alloy with fibrous microstructures formed during the cold rolling process recrystallizes, leading to an obvious drop of hardening effect and an increase of electrical conductivity. The Cu-Mg-Te-Y alloy with better comprehensive properties is obtained by annealing at 360-390 °C.