计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2014年
9期
65-68,115
,共5页
网络流量%预测精度%相空间重构%神经网络
網絡流量%預測精度%相空間重構%神經網絡
망락류량%예측정도%상공간중구%신경망락
network traffic%forecasting accuracy%phase space reconstruction%neural network
为了提高网络流量的预测精度,提出了一种混沌粒子群算法优化相空间重构和神经网络的网络流量预测模型(CPSO-BPNN)。利用混沌粒子群算法对BP神经网络初始参数、延迟时间、嵌入维数进行优化,根据延迟时间、嵌入维数对网络流量数据进行重构,BP神经网络根据初始参数进行训练建立网络流量预测模型,通过仿真实验对模型性能进行测试。结果表明,CPSO-BPNN可以准确描述网络流量的复杂变化趋势,提高了网络流量的预测精度。
為瞭提高網絡流量的預測精度,提齣瞭一種混沌粒子群算法優化相空間重構和神經網絡的網絡流量預測模型(CPSO-BPNN)。利用混沌粒子群算法對BP神經網絡初始參數、延遲時間、嵌入維數進行優化,根據延遲時間、嵌入維數對網絡流量數據進行重構,BP神經網絡根據初始參數進行訓練建立網絡流量預測模型,通過倣真實驗對模型性能進行測試。結果錶明,CPSO-BPNN可以準確描述網絡流量的複雜變化趨勢,提高瞭網絡流量的預測精度。
위료제고망락류량적예측정도,제출료일충혼돈입자군산법우화상공간중구화신경망락적망락류량예측모형(CPSO-BPNN)。이용혼돈입자군산법대BP신경망락초시삼수、연지시간、감입유수진행우화,근거연지시간、감입유수대망락류량수거진행중구,BP신경망락근거초시삼수진행훈련건립망락류량예측모형,통과방진실험대모형성능진행측시。결과표명,CPSO-BPNN가이준학묘술망락류량적복잡변화추세,제고료망락류량적예측정도。
In order to improve the network traffic forecasting accuracy, this paper proposes a network traffic forecasting model based on phase space reconstruction and neural network optimized by CPSO algorithm(CPSO-BPNN). The param-eters of BP neural network, delay time and the embedding dimension are optimized by Chaos Particle Swarm Optimiza-tion algorithm, and the data of network traffic are reconstructed. BP neural network is used to train to establish network traffic forecasting model based on the optimal parameters, and the simulation experiments are carried out to test the perfor-mance of network traffic forecasting model. The simulation results show that the proposed model can describe the change trend of network traffic, and improve the network traffic forecasting accuracy.