电子与信息学报
電子與信息學報
전자여신식학보
JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY
2014年
5期
1106-1112
,共7页
线性调频信号%LVD(LV’s Distribution)%分数低阶矩%参数估计%脉冲噪声
線性調頻信號%LVD(LV’s Distribution)%分數低階矩%參數估計%脈遲譟聲
선성조빈신호%LVD(LV’s Distribution)%분수저계구%삼수고계%맥충조성
Linear Frequency Modulation (LFM) signal%LV’s Distribution (LVD)%Fractional lower order moment%Parameter estimation%Impulsive noise
针对传统的线性调频(LFM)信号参数估计方法平滑交叉项时,会出现参数估计精度降低和计算复杂度增加等问题,该文引入 LVD(LV’s Distribution)方法,该方法可以在参数空间直接显示中心频率和调频斜率(CFCR)。LVD 首先对对称参数瞬时自相关函数(PSIAF)进行尺度变换,消除信号在时间轴上的线性频率偏移,然后对尺度变换后的时间变量作2维傅里叶变换,将1维LFM信号转化为2维单频信号。信号各分量在LVD平面表现为多个独立尖峰,使交叉项的能量聚集影响可忽略不计,且信号各峰值所在位置对应于各信号分量的中心频率和调频斜率。LVD可有效抑制高斯噪声,但在脉冲性较强的a稳定分布噪声中,该方法在CFCR域的性能退化甚至失效。对此,该文结合分数低阶统计量理论,提出一种a稳定分布噪声环境下的分数低阶LVD新方法。仿真实验表明该方法在高斯噪声和脉冲噪声环境下均可稳定工作,具有较好的鲁棒性。
針對傳統的線性調頻(LFM)信號參數估計方法平滑交扠項時,會齣現參數估計精度降低和計算複雜度增加等問題,該文引入 LVD(LV’s Distribution)方法,該方法可以在參數空間直接顯示中心頻率和調頻斜率(CFCR)。LVD 首先對對稱參數瞬時自相關函數(PSIAF)進行呎度變換,消除信號在時間軸上的線性頻率偏移,然後對呎度變換後的時間變量作2維傅裏葉變換,將1維LFM信號轉化為2維單頻信號。信號各分量在LVD平麵錶現為多箇獨立尖峰,使交扠項的能量聚集影響可忽略不計,且信號各峰值所在位置對應于各信號分量的中心頻率和調頻斜率。LVD可有效抑製高斯譟聲,但在脈遲性較彊的a穩定分佈譟聲中,該方法在CFCR域的性能退化甚至失效。對此,該文結閤分數低階統計量理論,提齣一種a穩定分佈譟聲環境下的分數低階LVD新方法。倣真實驗錶明該方法在高斯譟聲和脈遲譟聲環境下均可穩定工作,具有較好的魯棒性。
침대전통적선성조빈(LFM)신호삼수고계방법평활교차항시,회출현삼수고계정도강저화계산복잡도증가등문제,해문인입 LVD(LV’s Distribution)방법,해방법가이재삼수공간직접현시중심빈솔화조빈사솔(CFCR)。LVD 수선대대칭삼수순시자상관함수(PSIAF)진행척도변환,소제신호재시간축상적선성빈솔편이,연후대척도변환후적시간변량작2유부리협변환,장1유LFM신호전화위2유단빈신호。신호각분량재LVD평면표현위다개독립첨봉,사교차항적능량취집영향가홀략불계,차신호각봉치소재위치대응우각신호분량적중심빈솔화조빈사솔。LVD가유효억제고사조성,단재맥충성교강적a은정분포조성중,해방법재CFCR역적성능퇴화심지실효。대차,해문결합분수저계통계량이론,제출일충a은정분포조성배경하적분수저계LVD신방법。방진실험표명해방법재고사조성화맥충조성배경하균가은정공작,구유교호적로봉성。
In view of reducing the effects of cross terms, conventional methods of parameter estimation for Linear Frequency Modulation (LFM) signals suffer from low accuracy and huge computational complexity. To solve these problems, LV’s Distribution (LVD) based method is introdused in this paper. It provides directly accurate Centroid Frequency-Chirp Rate (CFCR) representation of a LFM signal. The rescaling operator is used for the Parametric Symmetric Instantaneous Autocorrelation Function (PSIAF) to eliminate the effects of linear frequency migration on the time axis, then a two-dimensional (2-D) Fourier transform is taken over the new scaled time variables to convert a 1-D LFM signal into a 2-D single-frequency signal. The resulting signal can be represented with distinct peaks on the CFCR plane, whereas the energy of the cross terms can be ignored compared with the peaks of auto terms. The coordinate values of LFM components directly correspond to their centroid frequency and chirp rate. LVD can suppress effectively the Gaussian noise, however, the performance of the CFCR domain analysis for signals in heavy-tailed impulsive noise environment is in severe degradation. Considering this issue, an improved Fractional Lower Order LVD (FLOLVD) for the a stable distribution noise is proposed. Computer simulation results show that the proposed approach obtains high-accuracy phase estimation, and it is robust to the impulse noise as well as the Gaussian noise.