电子与信息学报
電子與信息學報
전자여신식학보
JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY
2014年
5期
1075-1081
,共7页
无源定位%到达时差%到达频差%最小二乘%偏差%均方误差
無源定位%到達時差%到達頻差%最小二乘%偏差%均方誤差
무원정위%도체시차%도체빈차%최소이승%편차%균방오차
Passive localization%Time-Difference-Of-Arrival (TDOA)%Frequency-Difference-Of-Arrival (FDOA)%Least Square (LS)%Bias%Mean Square Error (MSE)
两步加权最小二乘方法(two-stage WLS)是求解TDOA/FDOA无源定位问题的经典线性方法,但也存在着定位偏差和均方误差对测量噪声的适应能力较差的缺点。该文根据TDOA/FDOA的伪线性定位方程组特点,将其建立为一种带约束条件的约束总体最小二乘(CTLS)模型,并采用拉格朗日乘子法求解带约束条件的CTLS问题,建立了几种最小二乘类定位方法的统一解,从而将约束加权最小二乘(CWLS)定位解和约束最小二乘(CLS)定位解变为该文 CTLS 定位解的特例。仿真表明,该文方法比两步加权最小二乘方法具有更低的均方误差,并能够有效减小定位偏差,因而具有更好的测量噪声适应能力。
兩步加權最小二乘方法(two-stage WLS)是求解TDOA/FDOA無源定位問題的經典線性方法,但也存在著定位偏差和均方誤差對測量譟聲的適應能力較差的缺點。該文根據TDOA/FDOA的偽線性定位方程組特點,將其建立為一種帶約束條件的約束總體最小二乘(CTLS)模型,併採用拉格朗日乘子法求解帶約束條件的CTLS問題,建立瞭幾種最小二乘類定位方法的統一解,從而將約束加權最小二乘(CWLS)定位解和約束最小二乘(CLS)定位解變為該文 CTLS 定位解的特例。倣真錶明,該文方法比兩步加權最小二乘方法具有更低的均方誤差,併能夠有效減小定位偏差,因而具有更好的測量譟聲適應能力。
량보가권최소이승방법(two-stage WLS)시구해TDOA/FDOA무원정위문제적경전선성방법,단야존재착정위편차화균방오차대측량조성적괄응능력교차적결점。해문근거TDOA/FDOA적위선성정위방정조특점,장기건립위일충대약속조건적약속총체최소이승(CTLS)모형,병채용랍격랑일승자법구해대약속조건적CTLS문제,건립료궤충최소이승류정위방법적통일해,종이장약속가권최소이승(CWLS)정위해화약속최소이승(CLS)정위해변위해문 CTLS 정위해적특례。방진표명,해문방법비량보가권최소이승방법구유경저적균방오차,병능구유효감소정위편차,인이구유경호적측량조성괄응능력。
The two-stage Weighted Least Squares (WLS) method is a well-known linear approach in Time-Difference-Of-Arrival (TDOA) and Frequency-Difference-Of-Arrival (FDOA) passive localization. But this method can only attain the CRLB in a modest noise environment and the bias of the localization result is significant for strong noise. This paper discusses a Constrained Total Least Square (CTLS) solution to the pseudo linear equations with two constrains for TDOA/FDOA localization. A unified expression for several LS solutions is derived based on Lagrange multiplier. The Constrained Weighted Least Square (CWLS) method and Constrained Least Square (CLS) localization method reduce to the special cases of the localization solution. The simulation results show that the proposed method has lower Mean Square Error (MSE) and lower bias compared with the two-stage WLS method, and it is more robust to noise.