电网技术
電網技術
전망기술
POWER SYSTEM TECHNOLOGY
2014年
5期
1127-1135
,共9页
动态直流泄能电阻%模块化多电平换流器%低电压穿越%功率恢复
動態直流洩能電阻%模塊化多電平換流器%低電壓穿越%功率恢複
동태직류설능전조%모괴화다전평환류기%저전압천월%공솔회복
dynamic chopper controlled breaking resistor%modular multilevel converter%low voltage ride through%power recovery
提出了基于动态直流泄能电阻的模块化多电平柔性输电直流方案,以提高基于感应双馈电机风电场的低电压穿越能力。基于矢量控制及无源电压跟随控制分别设计了系统侧、风场侧柔性直流换流器在风电场稳态运行时的控制策略。当交流系统故障导致电压跌落时,详细分析了动态直流泄能电阻的工作原理、动作判据及导通持续时间,以实现风电场低电压穿越;同时研究了其与系统侧模块化多电平换流器在故障清除后电压恢复期的协调控制,以快速恢复风电场有功输出能力。仿真结果表明:当交流系统故障时,含动态直流泄能电阻的柔性直流输电系统能够维持直流电压且不改变风电场输出电压电流;当故障清除后,风电场输出功率恢复速率远大于电力系统行业标准相关技术指标。
提齣瞭基于動態直流洩能電阻的模塊化多電平柔性輸電直流方案,以提高基于感應雙饋電機風電場的低電壓穿越能力。基于矢量控製及無源電壓跟隨控製分彆設計瞭繫統側、風場側柔性直流換流器在風電場穩態運行時的控製策略。噹交流繫統故障導緻電壓跌落時,詳細分析瞭動態直流洩能電阻的工作原理、動作判據及導通持續時間,以實現風電場低電壓穿越;同時研究瞭其與繫統側模塊化多電平換流器在故障清除後電壓恢複期的協調控製,以快速恢複風電場有功輸齣能力。倣真結果錶明:噹交流繫統故障時,含動態直流洩能電阻的柔性直流輸電繫統能夠維持直流電壓且不改變風電場輸齣電壓電流;噹故障清除後,風電場輸齣功率恢複速率遠大于電力繫統行業標準相關技術指標。
제출료기우동태직류설능전조적모괴화다전평유성수전직류방안,이제고기우감응쌍궤전궤풍전장적저전압천월능력。기우시량공제급무원전압근수공제분별설계료계통측、풍장측유성직류환류기재풍전장은태운행시적공제책략。당교류계통고장도치전압질락시,상세분석료동태직류설능전조적공작원리、동작판거급도통지속시간,이실현풍전장저전압천월;동시연구료기여계통측모괴화다전평환류기재고장청제후전압회복기적협조공제,이쾌속회복풍전장유공수출능력。방진결과표명:당교류계통고장시,함동태직류설능전조적유성직류수전계통능구유지직류전압차불개변풍전장수출전압전류;당고장청제후,풍전장수출공솔회복속솔원대우전력계통행업표준상관기술지표。
A modular multilevel voltage sourced converter-based HVDC (MMC-HVDC) power transmission scheme based on dynamic chopper controlled breaking resistor (DCCBR) is proposed to improve the low-voltage ride through (LVRT) capability of wind farm composed of doubly fed induction generators (DFIG). Based on vector control and network voltage tracing control the control strategies for grid side modular multilevel converter (GSMMC) and wind farm side modular multilevel converter (WFMMC) under steady state operation of wind farm are designed respectively. Under voltage sag caused by fault in AC power grid, the working principle, operating criterion and turn-on duration time of DCCBR are analyzed in depth to realize LVRT of wind farm;meanwhile, to recover the active power output capability of wind farm rapidly the coordinated control for DCCBR and GSMMC during the voltage recovery after clearing of the fault is researched. Simulation results show that during the fault in AC power grid the flexible HVDC transmission system containing DCCBR can maintain the DC voltage of HVDC system while the voltage and current output by wind farm are not changed; after the clearing of the fault, the recovery velocity of wind farm power output is much faster than relevant technical index specified in domestic power industry standards.