中国安全生产科学技术
中國安全生產科學技術
중국안전생산과학기술
JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY
2014年
4期
103-108
,共6页
模糊支持向量机%支持向量机%灰色关联分析法%煤与瓦斯突出
模糊支持嚮量機%支持嚮量機%灰色關聯分析法%煤與瓦斯突齣
모호지지향량궤%지지향량궤%회색관련분석법%매여와사돌출
fuzzy support vector machine%support vector machine%grey relational analysis method%coal and gas outburst
模糊支持向量机(FSVM)综合了模糊理论和支持向量机(SVM)的学习理论,不仅继承了SVM在小样本情况下所具有的较强识别能力的特点,并且比SVM拥有更好的学习能力。在FSVM算法中,每个样本被赋予一个隶属度值,使得构造目标函数时不同的样本有不同的贡献,达到最大限度的消除噪声或者孤立点的效果。运用了灰色关联分析( GRA)对煤与瓦斯突出指标进行提取,引入了一个合适的模糊隶属度函数,并在此基础上提出了基于FSVM的煤与瓦斯突出预测的模型,通过实际数据的验证和其他预测方法的对比,证明了FSVM模型能够满足煤与瓦斯突出预测的要求。最后,将FSVM和传统SVM对同一组数据进行训练,证明了FSVM相比较传统SVM拥有更高的精确度。
模糊支持嚮量機(FSVM)綜閤瞭模糊理論和支持嚮量機(SVM)的學習理論,不僅繼承瞭SVM在小樣本情況下所具有的較彊識彆能力的特點,併且比SVM擁有更好的學習能力。在FSVM算法中,每箇樣本被賦予一箇隸屬度值,使得構造目標函數時不同的樣本有不同的貢獻,達到最大限度的消除譟聲或者孤立點的效果。運用瞭灰色關聯分析( GRA)對煤與瓦斯突齣指標進行提取,引入瞭一箇閤適的模糊隸屬度函數,併在此基礎上提齣瞭基于FSVM的煤與瓦斯突齣預測的模型,通過實際數據的驗證和其他預測方法的對比,證明瞭FSVM模型能夠滿足煤與瓦斯突齣預測的要求。最後,將FSVM和傳統SVM對同一組數據進行訓練,證明瞭FSVM相比較傳統SVM擁有更高的精確度。
모호지지향량궤(FSVM)종합료모호이론화지지향량궤(SVM)적학습이론,불부계승료SVM재소양본정황하소구유적교강식별능력적특점,병차비SVM옹유경호적학습능력。재FSVM산법중,매개양본피부여일개대속도치,사득구조목표함수시불동적양본유불동적공헌,체도최대한도적소제조성혹자고립점적효과。운용료회색관련분석( GRA)대매여와사돌출지표진행제취,인입료일개합괄적모호대속도함수,병재차기출상제출료기우FSVM적매여와사돌출예측적모형,통과실제수거적험증화기타예측방법적대비,증명료FSVM모형능구만족매여와사돌출예측적요구。최후,장FSVM화전통SVM대동일조수거진행훈련,증명료FSVM상비교전통SVM옹유경고적정학도。
Fuzzy support vector machine (FSVM), which integrates the learning theory of support vector machine ( SVM) and fuzzy set theory , not only inherits the strong recognition ability on small samples of SVM , but also has better generalization ability than SVM .In FSVM algorithm , each sample is given a membership value in order that different samples in objective function have different contribution .So, FSVM can maximum eliminate influence of noise or isolated point.In this paper, grey relation analysis method (GRA) was applied to select coal and gas out-burst features .A fuzzy membership was introduced to each input point and a gas outburst prediction model was es -tablished based on FSVM .Through validation of practical data and comparison with other prediction methods , it showed that the FSVM model has good performance of coal and gas outburst prediction .In conclusion , the perform-ance of FSVM was compared with that of SVM and it showed that FSVM performs better than SVM .