科技和产业
科技和產業
과기화산업
SCIENCE TECHNOLOGY AND INDUSTRY
2014年
4期
143-146
,共4页
王强%汪姚%胡红飒%朱家明
王彊%汪姚%鬍紅颯%硃傢明
왕강%왕요%호홍삽%주가명
风电功率%BP神经网络算法%平均绝对误差MAE%风电功率预测模型%Matlab
風電功率%BP神經網絡算法%平均絕對誤差MAE%風電功率預測模型%Matlab
풍전공솔%BP신경망락산법%평균절대오차MAE%풍전공솔예측모형%Matlab
the wind power%BP neural network algorithm%Mean Absolute Error (MAE)%the wind power forecasting model%Matlab
针对风电功率的预测,从神经网络的训练仿真入手,综合运用BP神经网络、平均绝对误差MAE等多种方法,建立风电功率预测模型,运用M atlab和Excel软件编程,得到了后续7天中时隔5min和15min的风电功率预测趋势和时隔5min样本数据的预测误差水平相对于15min来说降低了6.349%等结果。
針對風電功率的預測,從神經網絡的訓練倣真入手,綜閤運用BP神經網絡、平均絕對誤差MAE等多種方法,建立風電功率預測模型,運用M atlab和Excel軟件編程,得到瞭後續7天中時隔5min和15min的風電功率預測趨勢和時隔5min樣本數據的預測誤差水平相對于15min來說降低瞭6.349%等結果。
침대풍전공솔적예측,종신경망락적훈련방진입수,종합운용BP신경망락、평균절대오차MAE등다충방법,건립풍전공솔예측모형,운용M atlab화Excel연건편정,득도료후속7천중시격5min화15min적풍전공솔예측추세화시격5min양본수거적예측오차수평상대우15min래설강저료6.349%등결과。
Aimed at the wind power forecasting ,the wind power forecasting model is established based on the training simulation of the neural net-work via means of the BP neural network algorithm ,MAE ,etc. Through such a model and using Matlab and Excell,we get the wind power fore-casting trend at the intervals of 5minutes and 15minutes of the following 7 days and the result that the forecasting error of the sample data at the interval of 5minutes is 6.349% lower than that of 15minutes .