水利学报
水利學報
수리학보
2014年
4期
467-473
,共7页
严海军%肖建伟%李文颖%李永冲%侯永胜
嚴海軍%肖建偉%李文穎%李永遲%侯永勝
엄해군%초건위%리문영%리영충%후영성
低压喷头%水滴直径%工作压力%喷嘴直径%转速
低壓噴頭%水滴直徑%工作壓力%噴嘴直徑%轉速
저압분두%수적직경%공작압력%분취직경%전속
low-pressure sprinkler%droplet size%operating pressure%nozzle diameter%rotating speed
为了提高机组喷洒均匀性、降低对土壤作物的打击强度,近几年国内圆形喷灌机逐渐安装低压阻尼旋转喷头,以替代非旋转低压喷头。本文采用面粉法对R3000和A3000低压阻尼喷头在安装3种喷嘴(直径为2.98、4.96和6.95 mm)和2种工作压力(100和140 kPa)下的水滴直径分布规律进行了试验,分析了水滴平均直径和总体水滴直径分布,探讨了水滴直径与喷头转速、喷嘴直径及工作压力的关系。结果表明,在相同工作压力和喷嘴直径下,A3000喷头转速要快于R3000喷头,但射程和末端水滴直径均有所减小。在相同喷嘴直径下,两种喷头随着工作压力的增大,射程均有所增大,但末端水滴直径呈变小趋势;在相同工作压力下,随着喷嘴直径增大,喷头射程均呈增大趋势,但末端水滴直径变化不显著。A3000喷头总体水滴直径分布范围比R3000喷头窄,不同工况下测得的A3000喷头水滴中数直径比R3000喷头小3.6%~8.9%。两种喷头径向不同位置处的水滴平均直径与喷头距离呈指数关系,中数直径随工作压力增大或喷嘴直径减小而变小。
為瞭提高機組噴灑均勻性、降低對土壤作物的打擊彊度,近幾年國內圓形噴灌機逐漸安裝低壓阻尼鏇轉噴頭,以替代非鏇轉低壓噴頭。本文採用麵粉法對R3000和A3000低壓阻尼噴頭在安裝3種噴嘴(直徑為2.98、4.96和6.95 mm)和2種工作壓力(100和140 kPa)下的水滴直徑分佈規律進行瞭試驗,分析瞭水滴平均直徑和總體水滴直徑分佈,探討瞭水滴直徑與噴頭轉速、噴嘴直徑及工作壓力的關繫。結果錶明,在相同工作壓力和噴嘴直徑下,A3000噴頭轉速要快于R3000噴頭,但射程和末耑水滴直徑均有所減小。在相同噴嘴直徑下,兩種噴頭隨著工作壓力的增大,射程均有所增大,但末耑水滴直徑呈變小趨勢;在相同工作壓力下,隨著噴嘴直徑增大,噴頭射程均呈增大趨勢,但末耑水滴直徑變化不顯著。A3000噴頭總體水滴直徑分佈範圍比R3000噴頭窄,不同工況下測得的A3000噴頭水滴中數直徑比R3000噴頭小3.6%~8.9%。兩種噴頭徑嚮不同位置處的水滴平均直徑與噴頭距離呈指數關繫,中數直徑隨工作壓力增大或噴嘴直徑減小而變小。
위료제고궤조분쇄균균성、강저대토양작물적타격강도,근궤년국내원형분관궤축점안장저압조니선전분두,이체대비선전저압분두。본문채용면분법대R3000화A3000저압조니분두재안장3충분취(직경위2.98、4.96화6.95 mm)화2충공작압력(100화140 kPa)하적수적직경분포규률진행료시험,분석료수적평균직경화총체수적직경분포,탐토료수적직경여분두전속、분취직경급공작압력적관계。결과표명,재상동공작압력화분취직경하,A3000분두전속요쾌우R3000분두,단사정화말단수적직경균유소감소。재상동분취직경하,량충분두수착공작압력적증대,사정균유소증대,단말단수적직경정변소추세;재상동공작압력하,수착분취직경증대,분두사정균정증대추세,단말단수적직경변화불현저。A3000분두총체수적직경분포범위비R3000분두착,불동공황하측득적A3000분두수적중수직경비R3000분두소3.6%~8.9%。량충분두경향불동위치처적수적평균직경여분두거리정지수관계,중수직경수공작압력증대혹분취직경감소이변소。
In order to improve coefficient of water distribution uniformity and lessen impact force of droplet on the soil and crops, low-pressure damping rotating sprinklers have been gradually applied on the center pivot irrigation systems in recent years, instead of non-rotating sprinklers. In this study, droplet size distri-butions of low-pressure damping of R3000 and A3000 sprinklers with three nozzles (diameters of 2.97, 4.96 and 6.95 mm, respectively) were measured with the flour method at two operating pressures of 100 and 140 kPa. The mean diameter of spray droplets and the overall droplet size distributions were calculated for each scenario. The effects of rotating speed, nozzle diameter and operating pressure on the droplet size were also analyzed. The results show that in comparison with the R3000 sprinkler at the same nozzle size and operating pressure, the A3000 sprinkler rotates faster, with a smaller spraying range and maximum droplet diameter. The spraying ranges of the two sprinklers increase with nozzle diameter. The maximum droplet diameter decreases with the increase of operation pressure. At the same operation pressure, the spraying ranges of the two sprinklers tend to increase with nozzle diameter,but the maximum droplet diame-ter does not change significantly. The A3000 sprinkler droplet diameter distribution is narrower than the R3000 sprinkler. The median diameters of A3000 sprinkler are 3.6 %-8.9 % smaller than the R3000 sprin-kler in different conditions. In addition, the mean diameter of the spray droplet is exponentially fitted with the distance from the sprinkler, and the median diameter becomes smaller as the operating pressure in-creased or the nozzle diameter decreased.