红外与激光工程
紅外與激光工程
홍외여격광공정
INFRARED AND LASER ENGINEERING
2014年
4期
1226-1229
,共4页
张连东%冯刘%刘晖%程宏昌%高翔%张晓辉
張連東%馮劉%劉暉%程宏昌%高翔%張曉輝
장련동%풍류%류휘%정굉창%고상%장효휘
GaAs光阴极%表面%高温退火%XPS
GaAs光陰極%錶麵%高溫退火%XPS
GaAs광음겁%표면%고온퇴화%XPS
GaAs photocathode%surface%high temperature annealing%XPS
利用XPS分析了GaAs光阴极高温退火、激活前后表面组分的变化,结合光阴极退火过程中通过四级质谱仪获取的CO2、H2O、O、As、Cs等分压曲线,比较、讨论了两次退火机理的差异。提出第二次加热的目的不仅在于清洁光阴极表面,更重要的是促使第一次激活在光阴极表面形成的偶极层向更稳定的结构转化,Cs2O偶极子在高温下与GaAs本底反应生成了可在光阴极表面稳定存在的GaAs-O-Cs偶极子,形成主要由键合强的GaAs(Zn)--Cs+、GaAs-O-Cs偶极子及靠范德瓦尔斯力附着在光阴极表面的Cs2O偶极子构成的偶极层。根据这一结论,解释了光阴极两次激活过程中光电流变化规律的差异。对理解光阴极激活及表面光电发射模型具有重要意义。
利用XPS分析瞭GaAs光陰極高溫退火、激活前後錶麵組分的變化,結閤光陰極退火過程中通過四級質譜儀穫取的CO2、H2O、O、As、Cs等分壓麯線,比較、討論瞭兩次退火機理的差異。提齣第二次加熱的目的不僅在于清潔光陰極錶麵,更重要的是促使第一次激活在光陰極錶麵形成的偶極層嚮更穩定的結構轉化,Cs2O偶極子在高溫下與GaAs本底反應生成瞭可在光陰極錶麵穩定存在的GaAs-O-Cs偶極子,形成主要由鍵閤彊的GaAs(Zn)--Cs+、GaAs-O-Cs偶極子及靠範德瓦爾斯力附著在光陰極錶麵的Cs2O偶極子構成的偶極層。根據這一結論,解釋瞭光陰極兩次激活過程中光電流變化規律的差異。對理解光陰極激活及錶麵光電髮射模型具有重要意義。
이용XPS분석료GaAs광음겁고온퇴화、격활전후표면조분적변화,결합광음겁퇴화과정중통과사급질보의획취적CO2、H2O、O、As、Cs등분압곡선,비교、토론료량차퇴화궤리적차이。제출제이차가열적목적불부재우청길광음겁표면,경중요적시촉사제일차격활재광음겁표면형성적우겁층향경은정적결구전화,Cs2O우겁자재고온하여GaAs본저반응생성료가재광음겁표면은정존재적GaAs-O-Cs우겁자,형성주요유건합강적GaAs(Zn)--Cs+、GaAs-O-Cs우겁자급고범덕와이사력부착재광음겁표면적Cs2O우겁자구성적우겁층。근거저일결론,해석료광음겁량차격활과정중광전류변화규률적차이。대리해광음겁격활급표면광전발사모형구유중요의의。
The change of GaAs photocathode surface composition was analyzed by XPS before and after the photocathode was annealed and activated, combined the pressure curve of CO2, H2O, O, As, Cs obtained through four mass spectrometer while the photocathode was annealing, the difference of the two annealing was compared and discussed. It was Proposed that for the purpose of the second heating was not only cleaning photocathode surface, it was more important to procure first activated in a photocathode formed on the surface of the dipole layer is transformed to the more stable structure at high temperatures, Cs2O dipoles reacted with GaAs and generated on the photocathode surface of the stable existence of the GaAs-O-Cs dipoles, formed dipoles layer mainly by bonding strong GaAs (Zn)--Cs+, GaAs-O-Cs dipoles and Cs2O dipoles which was attached to the photocathode surface by the Van der Waals force. Based on this conclusion, The differences of light current variation between the activation of the photocathode was explained. It was of great significance to understand the activation of the photocathode and photoelectric launch model.