计算机工程
計算機工程
계산궤공정
COMPUTER ENGINEERING
2014年
2期
203-207
,共5页
李星%郭晓松%郭君斌
李星%郭曉鬆%郭君斌
리성%곽효송%곽군빈
自适应双阈值%特征提取%多特征融合%Fisher 准则%前向车辆检测
自適應雙閾值%特徵提取%多特徵融閤%Fisher 準則%前嚮車輛檢測
자괄응쌍역치%특정제취%다특정융합%Fisher 준칙%전향차량검측
adaptive dual-threshold%feature extraction%multi-feature fusion%Fisher criterion%forward vehicle detection
针对传统车辆检测方法定位精度不高的问题,提出一种基于多特征融合的前向车辆检测方法。采用基于直方图分析和自适应双阈值的方法分别实现阴影和边缘特征的准确分割,并通过阴影和边缘特征的综合分析,生成车辆假设区域。利用对称性、纹理和轮廓匹配度3个特征融合得到的综合特征对获得的车辆假设区域进行验证,剔除其中的误检区域。实验结果证明,该方法能在不同光照条件下自适应地进行车辆检测,检测率可达92%以上,且在检测率和误检率2项指标上均优于传统基于学习的方法。
針對傳統車輛檢測方法定位精度不高的問題,提齣一種基于多特徵融閤的前嚮車輛檢測方法。採用基于直方圖分析和自適應雙閾值的方法分彆實現陰影和邊緣特徵的準確分割,併通過陰影和邊緣特徵的綜閤分析,生成車輛假設區域。利用對稱性、紋理和輪廓匹配度3箇特徵融閤得到的綜閤特徵對穫得的車輛假設區域進行驗證,剔除其中的誤檢區域。實驗結果證明,該方法能在不同光照條件下自適應地進行車輛檢測,檢測率可達92%以上,且在檢測率和誤檢率2項指標上均優于傳統基于學習的方法。
침대전통차량검측방법정위정도불고적문제,제출일충기우다특정융합적전향차량검측방법。채용기우직방도분석화자괄응쌍역치적방법분별실현음영화변연특정적준학분할,병통과음영화변연특정적종합분석,생성차량가설구역。이용대칭성、문리화륜곽필배도3개특정융합득도적종합특정대획득적차량가설구역진행험증,척제기중적오검구역。실험결과증명,해방법능재불동광조조건하자괄응지진행차량검측,검측솔가체92%이상,차재검측솔화오검솔2항지표상균우우전통기우학습적방법。
A forward vehicle detection method based on multi-feature fusion is proposed in order to improve the accuracy of vehicle detection. The shadow and edge features of vehicle are segmented accurately by using histogram analysis method and adaptive dual-threshold method respectively. The initial candidates are generated by combining edge and shadow features and these initial candidates are further verified by using an integrated feature based on the fusion of symmetry, texture and shape matching degree features. A threshold is used to remove the non-vehicle initial candidates. Experimental results show that this method can adapt to different light conditions robustly with a detection rate over 92%. The proposed method is better than traditional methods based on learning with a higher detection rate and lower error rate.