计算机工程
計算機工程
계산궤공정
COMPUTER ENGINEERING
2014年
2期
166-170
,共5页
动态社会网络%社团结构%稳定性%噪声滤除%相对熵%增量算法
動態社會網絡%社糰結構%穩定性%譟聲濾除%相對熵%增量算法
동태사회망락%사단결구%은정성%조성려제%상대적%증량산법
dynamic social network%community structure%stability%noise filtering%relative entropy%incremental algorithm
在动态社会网络中,诸如垃圾邮件之类的噪声会影响网络的稳定性,导致其社团结构难以被准确发现。针对该问题,提出一种采用增量结构的社团发现算法。利用相对熵处理噪声,通过改进的增量算法发现社团结构。实验结果表明,该算法针对不同动态社会网络的发现性能均优于传统动态社团发现算法,其模块度可达到0.8左右,互信息值变化也较平稳,可有效避免噪声对算法性能的影响。
在動態社會網絡中,諸如垃圾郵件之類的譟聲會影響網絡的穩定性,導緻其社糰結構難以被準確髮現。針對該問題,提齣一種採用增量結構的社糰髮現算法。利用相對熵處理譟聲,通過改進的增量算法髮現社糰結構。實驗結果錶明,該算法針對不同動態社會網絡的髮現性能均優于傳統動態社糰髮現算法,其模塊度可達到0.8左右,互信息值變化也較平穩,可有效避免譟聲對算法性能的影響。
재동태사회망락중,제여랄급유건지류적조성회영향망락적은정성,도치기사단결구난이피준학발현。침대해문제,제출일충채용증량결구적사단발현산법。이용상대적처리조성,통과개진적증량산법발현사단결구。실험결과표명,해산법침대불동동태사회망락적발현성능균우우전통동태사단발현산법,기모괴도가체도0.8좌우,호신식치변화야교평은,가유효피면조성대산법성능적영향。
The exist noises like junk mails in dynamic social network which affect the stability of the dynamic social network. The existed dynamic community detection algorithms cannot identify this kind of community structure correctly. Aiming at this problem, an algorithm called preFilter is proposed to solve the problems that the community structure cannot be identified correctly with the noise in the dynamic social network. It uses the relative entropy to filtering the noise in dynamic social network, then an improved incremental algorithm is proposed to identify community structure in the dynamic social network. Experimental results show that preFilter can reach a better performance than other dynamic algorithms, and get a stable NMI value and the modularity Q value which reaches about 0.8. This algorithm can avoid the influence of the noise effectively and performs effectively and accurately in identifying community structures in dynamic social networks.