计算机工程
計算機工程
계산궤공정
COMPUTER ENGINEERING
2014年
2期
6-10
,共5页
曾威龙%奚宏生%朱里越%胡晗
曾威龍%奚宏生%硃裏越%鬍晗
증위룡%해굉생%주리월%호함
云计算%数据中心%虚拟机%节能%自适应 Holt-Winters 预测%极大似然估计
雲計算%數據中心%虛擬機%節能%自適應 Holt-Winters 預測%極大似然估計
운계산%수거중심%허의궤%절능%자괄응 Holt-Winters 예측%겁대사연고계
cloud computing%data center%Virtual Machine(VM)%energy-saving%Adaptive Holt-Winters(AHW) prediction%Maximum Likelihood Estimation(MLE)
为能在保证服务质量的前提下提高数据中心能源利用率,提出一种基于用户访问量预测的数据中心虚拟机自适应节能机制,根据自适应 Holt-Winters(AHW)预测法研究互联网用户访问行为的周期性,使其能根据用户访问量自适应地调整虚拟机数量以提高虚拟机的利用率,达到减少数据中心能耗的目的。仿真实验结果显示,AHW 预测法最高平均绝对百分误差为22.46%,基于AHW 预测法的数据中心虚拟机利用率为97.88%,相比未采用节能机制时提高了37.19%,从而证明该节能机制对周期性用户访问进行预测时具有较好的统计性能和较强的鲁棒性,能更好地满足数据中心节能的需求。
為能在保證服務質量的前提下提高數據中心能源利用率,提齣一種基于用戶訪問量預測的數據中心虛擬機自適應節能機製,根據自適應 Holt-Winters(AHW)預測法研究互聯網用戶訪問行為的週期性,使其能根據用戶訪問量自適應地調整虛擬機數量以提高虛擬機的利用率,達到減少數據中心能耗的目的。倣真實驗結果顯示,AHW 預測法最高平均絕對百分誤差為22.46%,基于AHW 預測法的數據中心虛擬機利用率為97.88%,相比未採用節能機製時提高瞭37.19%,從而證明該節能機製對週期性用戶訪問進行預測時具有較好的統計性能和較彊的魯棒性,能更好地滿足數據中心節能的需求。
위능재보증복무질량적전제하제고수거중심능원이용솔,제출일충기우용호방문량예측적수거중심허의궤자괄응절능궤제,근거자괄응 Holt-Winters(AHW)예측법연구호련망용호방문행위적주기성,사기능근거용호방문량자괄응지조정허의궤수량이제고허의궤적이용솔,체도감소수거중심능모적목적。방진실험결과현시,AHW 예측법최고평균절대백분오차위22.46%,기우AHW 예측법적수거중심허의궤이용솔위97.88%,상비미채용절능궤제시제고료37.19%,종이증명해절능궤제대주기성용호방문진행예측시구유교호적통계성능화교강적로봉성,능경호지만족수거중심절능적수구。
In order to improve the energy utilization rate in data center on the premise of guaranteeing Quality of Service(QoS), this paper proposes a data center Virtual Machine(VM) adaptive energy-saving mechanism based on the prediction of users’ access quantity, and researches periodicity of users’ visit by Adaptive Holt-Winters(AHW) prediction method. It can adaptively adjust the number of VM according to user visits to improve the utilization rate of VM and achieve the purpose of reducing data center energy consumption. Simulation experimental results show that the Mean Absolute Percentage Error(MAPE) of AHW method is 22.46% and the utilization rate of VM in data center is 97.88% which is promoted by 37.19% compared with the former utilization without using this adaptive energy-saving mechanism, and proves that this energy-saving mechanism has good statistical properties and stability for forecasting the periodic user access, it can be better satisfy the needs of data center energy-efficient.