水资源与水工程学报
水資源與水工程學報
수자원여수공정학보
JOURNAL OF WATER RESOURCES AND WATER ENGINEERING
2014年
2期
153-157
,共5页
高忠咏%赵爱军%冯天梅%张鑫
高忠詠%趙愛軍%馮天梅%張鑫
고충영%조애군%풍천매%장흠
年径流%小波分析%BP神经网络%年径流预测%秃尾河
年徑流%小波分析%BP神經網絡%年徑流預測%禿尾河
년경류%소파분석%BP신경망락%년경류예측%독미하
annual runoff%wavelet analysis%BP-neural network%forecast of annual runoff%Tuwei river
对流域径流的变化规律进行准确地分析及合理地预测对流域水资源的合理开发、水利工程的建设以及社会经济的发展具有重要的指导意义。利用Mann-Kendall秩次相关检验法和小波分析理论对秃尾河流域的径流变化规律进行分析研究,并建立BP神经网络模型对径流变化进行预测分析。结果表明:秃尾河流域年径流量变化总体上有明显的下降趋势;从小波系数图可以看出年径流过程主要存在2年、8年和19年左右的变化周期,其中19年左右时间尺度为第一主周期,同时发现目前年径流处在枯水期后期,水量有转向增加的趋势;采用BP神经网络法对秃尾河流域高家川站年径流量进行预测,预测结果相对误差仅为5.92%,说明所建立的BP神经网络模型用于该流域的年径流预测得精度较高,是一种有效地年径流预测方法。
對流域徑流的變化規律進行準確地分析及閤理地預測對流域水資源的閤理開髮、水利工程的建設以及社會經濟的髮展具有重要的指導意義。利用Mann-Kendall秩次相關檢驗法和小波分析理論對禿尾河流域的徑流變化規律進行分析研究,併建立BP神經網絡模型對徑流變化進行預測分析。結果錶明:禿尾河流域年徑流量變化總體上有明顯的下降趨勢;從小波繫數圖可以看齣年徑流過程主要存在2年、8年和19年左右的變化週期,其中19年左右時間呎度為第一主週期,同時髮現目前年徑流處在枯水期後期,水量有轉嚮增加的趨勢;採用BP神經網絡法對禿尾河流域高傢川站年徑流量進行預測,預測結果相對誤差僅為5.92%,說明所建立的BP神經網絡模型用于該流域的年徑流預測得精度較高,是一種有效地年徑流預測方法。
대류역경류적변화규률진행준학지분석급합리지예측대류역수자원적합리개발、수리공정적건설이급사회경제적발전구유중요적지도의의。이용Mann-Kendall질차상관검험법화소파분석이론대독미하류역적경류변화규률진행분석연구,병건립BP신경망락모형대경류변화진행예측분석。결과표명:독미하류역년경류량변화총체상유명현적하강추세;종소파계수도가이간출년경류과정주요존재2년、8년화19년좌우적변화주기,기중19년좌우시간척도위제일주주기,동시발현목전년경류처재고수기후기,수량유전향증가적추세;채용BP신경망락법대독미하류역고가천참년경류량진행예측,예측결과상대오차부위5.92%,설명소건립적BP신경망락모형용우해류역적년경류예측득정도교고,시일충유효지년경류예측방법。
The accurate analysis and reasonable prediction of rule of runoff variation have a great signifi-cance for reasonable development of water resources , construction of water conservancy project and develop-ment of social economy .Using Mann-Kendall method and wavelet analysis method , the paper analyzed and researched the variety regulation of runoff in Tuwei river basin ,and established the neural network model to forecast the runoff variation .The results show that the runoff in Tuwei river basin has a obvious decreasing trend;from the wavelet coefficient chart we can know that the annual runoff process primarily have the peri -od of 2 years, 8 years and 19 years , of which about time scale of 19 years as the first cycle , also found that the current annual runoff is in the late dry season , the amount of water has trend of rising;by using the neu-ral network model to forecast the annual runoff at Gaojiachuan station in Tuwei river basin ,the relative error of prediction is only 5 .92%,which shows that the forecast precision of annual runoff in the basin by neural network model is higher and a very effective method of annual runoff forecast .