系统工程与电子技术
繫統工程與電子技術
계통공정여전자기술
SYSTEMS ENGINEERING AND ELECTRONICS
2014年
4期
795-801
,共7页
骆明珠%陈颖%康锐
駱明珠%陳穎%康銳
락명주%진영%강예
可靠性%参数计算%失效物理模型%蒙特卡罗仿真%多任务剖面%失效分布
可靠性%參數計算%失效物理模型%矇特卡囉倣真%多任務剖麵%失效分佈
가고성%삼수계산%실효물리모형%몽특잡라방진%다임무부면%실효분포
reliability%parameter calculation%physics of failure (PoF)model%Monte Carlo simulation%multiple mission profile%failure distribution
现有的基于失效物理(physics of failure,PoF)模型的可靠性预计只能计算电子产品在寿命周期内经历单一典型任务剖面的失效时间。本文提出了一种基于失效物理模型,并利用蒙特卡罗仿真定量分析电子产品在寿命周期内实际经历多任务剖面的可靠性水平的新方法。将该方法应用于某机载电子设备的平均失效前时间(mean time to failure,MTTF)的计算,建立失效率和可靠度的时间函数,与目前国内工程实践中常用的失效率经验模型法以及设备可靠性强化试验的结果进行了对比分析。结果表明,该方法不仅可以计算可靠性参数,而且通过分析与计算过程可发现设计薄弱环节与可靠性参数的定量关系,有效指导设计改进。
現有的基于失效物理(physics of failure,PoF)模型的可靠性預計隻能計算電子產品在壽命週期內經歷單一典型任務剖麵的失效時間。本文提齣瞭一種基于失效物理模型,併利用矇特卡囉倣真定量分析電子產品在壽命週期內實際經歷多任務剖麵的可靠性水平的新方法。將該方法應用于某機載電子設備的平均失效前時間(mean time to failure,MTTF)的計算,建立失效率和可靠度的時間函數,與目前國內工程實踐中常用的失效率經驗模型法以及設備可靠性彊化試驗的結果進行瞭對比分析。結果錶明,該方法不僅可以計算可靠性參數,而且通過分析與計算過程可髮現設計薄弱環節與可靠性參數的定量關繫,有效指導設計改進。
현유적기우실효물리(physics of failure,PoF)모형적가고성예계지능계산전자산품재수명주기내경력단일전형임무부면적실효시간。본문제출료일충기우실효물리모형,병이용몽특잡라방진정량분석전자산품재수명주기내실제경력다임무부면적가고성수평적신방법。장해방법응용우모궤재전자설비적평균실효전시간(mean time to failure,MTTF)적계산,건립실효솔화가고도적시간함수,여목전국내공정실천중상용적실효솔경험모형법이급설비가고성강화시험적결과진행료대비분석。결과표명,해방법불부가이계산가고성삼수,이차통과분석여계산과정가발현설계박약배절여가고성삼수적정량관계,유효지도설계개진。
The existing reliability prediction methods based on physics of failure (PoF)models merely cal-culate electronic products’time to failure responding to a single typical mission profile.A novel reliability pa-rameter calculation method based on PoF models and Monte Carlo simulation is presented,which can quantita-tively analyze the reliability of electronic products actually undergoing multiple mission profiles in the whole life cycle.The method is applied to some airborne electronic equipment to calculate the mean time to failure (MTTF)and build time functions of failure rate and reliability.The results are contrastively analyzed with those concluded by the empirical model based method and reliability enhancement testing.It shows that the proposed method can not only calculate reliability parameters but also find out design weaknesses and their quantitative relationships with reliability parameters,which is an effective guidance to design improvements.