中国药物与临床
中國藥物與臨床
중국약물여림상
CHINESE REMEDIES & CLINICS
2014年
5期
568-571
,共4页
王晨%魏荣%张晓琴%高丽芳%尚丽芳%鄂丽%史永红
王晨%魏榮%張曉琴%高麗芳%尚麗芳%鄂麗%史永紅
왕신%위영%장효금%고려방%상려방%악려%사영홍
转染%细胞增殖%细胞凋亡%高糖%信号传导%肾小球系膜细胞%SOCS3基因
轉染%細胞增殖%細胞凋亡%高糖%信號傳導%腎小毬繫膜細胞%SOCS3基因
전염%세포증식%세포조망%고당%신호전도%신소구계막세포%SOCS3기인
Transfection%Cell proliferation%Apoptosis%High glucose%Signal transduction%Human glomerular mesangial cells%SOCS3 gene
目的:探讨细胞因子信号负调控因子(SOCS)3基因对高糖培养下人肾小球系膜细胞(HMCs)增殖、凋亡的影响。方法以脂质体为载体将PCR3.1 SOCS3转染至体外培养的HMCs,应用反转录聚合酶链反应(RT-PCR)和免疫细胞化学法鉴定转染前后细胞中SOCS3 mRNA和蛋白表达;高糖培养HMCs 12、24、48 h,采用蛋白印迹法分别检测正常对照组(CG)、高糖组(HG)、高糖+空质粒转染(HG+PV)组、高糖+SOCS3基因转染(HG+PS)组蛋白酪氨酸磷酸激酶(JAK)2、信号转导及转录活化因子(STAT)1蛋白酪氨酸磷酸化水平变化;免疫细胞化学法、末端脱氧核苷酸转移酶介导的dUTP缺口末端标记技术(TUNEL)法检测转染前后细胞增殖指数(PI)和凋亡指数(AI)。结果经鉴定,转染后HMCs中有SOCS3 mRNA和蛋白稳定表达;与CG组和HG+PV组相比,HG+PS组细胞中JAK2、STAT1蛋白酪氨酸磷酸化水平显著下降(P<0.05),PI显著减少(P<0.01),AI无明显差异。结论 SOCS3蛋白可能通过降低JAK2、STAT1酪氨酸磷酸化水平抑制HMCs增殖。
目的:探討細胞因子信號負調控因子(SOCS)3基因對高糖培養下人腎小毬繫膜細胞(HMCs)增殖、凋亡的影響。方法以脂質體為載體將PCR3.1 SOCS3轉染至體外培養的HMCs,應用反轉錄聚閤酶鏈反應(RT-PCR)和免疫細胞化學法鑒定轉染前後細胞中SOCS3 mRNA和蛋白錶達;高糖培養HMCs 12、24、48 h,採用蛋白印跡法分彆檢測正常對照組(CG)、高糖組(HG)、高糖+空質粒轉染(HG+PV)組、高糖+SOCS3基因轉染(HG+PS)組蛋白酪氨痠燐痠激酶(JAK)2、信號轉導及轉錄活化因子(STAT)1蛋白酪氨痠燐痠化水平變化;免疫細胞化學法、末耑脫氧覈苷痠轉移酶介導的dUTP缺口末耑標記技術(TUNEL)法檢測轉染前後細胞增殖指數(PI)和凋亡指數(AI)。結果經鑒定,轉染後HMCs中有SOCS3 mRNA和蛋白穩定錶達;與CG組和HG+PV組相比,HG+PS組細胞中JAK2、STAT1蛋白酪氨痠燐痠化水平顯著下降(P<0.05),PI顯著減少(P<0.01),AI無明顯差異。結論 SOCS3蛋白可能通過降低JAK2、STAT1酪氨痠燐痠化水平抑製HMCs增殖。
목적:탐토세포인자신호부조공인자(SOCS)3기인대고당배양하인신소구계막세포(HMCs)증식、조망적영향。방법이지질체위재체장PCR3.1 SOCS3전염지체외배양적HMCs,응용반전록취합매련반응(RT-PCR)화면역세포화학법감정전염전후세포중SOCS3 mRNA화단백표체;고당배양HMCs 12、24、48 h,채용단백인적법분별검측정상대조조(CG)、고당조(HG)、고당+공질립전염(HG+PV)조、고당+SOCS3기인전염(HG+PS)조단백락안산린산격매(JAK)2、신호전도급전록활화인자(STAT)1단백락안산린산화수평변화;면역세포화학법、말단탈양핵감산전이매개도적dUTP결구말단표기기술(TUNEL)법검측전염전후세포증식지수(PI)화조망지수(AI)。결과경감정,전염후HMCs중유SOCS3 mRNA화단백은정표체;여CG조화HG+PV조상비,HG+PS조세포중JAK2、STAT1단백락안산린산화수평현저하강(P<0.05),PI현저감소(P<0.01),AI무명현차이。결론 SOCS3단백가능통과강저JAK2、STAT1락안산린산화수평억제HMCs증식。
Objective To investigate the effects of SOCS3 gene on proliferation and apoptosis of human glomerular mesangial cells (HMCs) upon high glucose (HG) stimulation. Methods HMCs were transfected with PCR3.1 SOCS3 by using liposomes as carriers. The expressions of SOCS3 mRNA and protein were detected by reverse transcriptase polymerase chain reaction and immunocytochemistry assay, respectively. Following incubation under HG conditions, the cells were divided into blank control group (CG), HG group (HG), HG+PCR3.1 SOCS3 transfection group (HG+PS) and HG+PCR 3.1-vector transfection group (HG+PV) for the determination of the levels of tyrosine-phosphorylated JAK2 and STAT1 level by using Western blotting at 12, 24 48 hours after HG stimulation. Immunocy-tochemistry assay and TUNEL assay were adopted to analyze the SOCS3 tranfected HMCs proliferation activity index (PI) and cell apoptosis index (AI) 48 hours after HG stimulation. Results The SOCS3 mRNA and protein expression was confirmed following transfection with SOCS3 gene. The CG group and HG+PV group yielded markedly reduced levels of tyrosine-phosphorylated JAK2 and STAT1 (P<0.05) and PI (P<0.01), but not AI (P>0.05). Conclusion SOCS3 protein may inhibit the proliferation of HMCs by down-regulating the tyrosine-phosphorylated levels of JAK2 and STAT1 protein.