化工学报
化工學報
화공학보
JOURNAL OF CHEMICAL INDUSY AND ENGINEERING (CHINA)
2014年
5期
1764-1770
,共7页
方芳%刘晓宁%王楠%王舒雅%姜岷%魏荣卿%郑涛
方芳%劉曉寧%王楠%王舒雅%薑岷%魏榮卿%鄭濤
방방%류효저%왕남%왕서아%강민%위영경%정도
聚苯乙烯树脂%梳状弱碱性树脂%丁二酸%吸附%循环解吸
聚苯乙烯樹脂%梳狀弱堿性樹脂%丁二痠%吸附%循環解吸
취분을희수지%소상약감성수지%정이산%흡부%순배해흡
polystyrene resin%comb-like weak base resin%succinic acid%absorption%circulating desorption
建立了一种有效的、低能耗的从梳状弱碱性(MKF-D30X)树脂上解吸丁二酸的工艺。考察了解吸剂用量(体积)、解吸温度、分段解吸及分段循环解吸对MKF-D30X树脂解吸附丁二酸的影响。结果表明,MKF-D30X树脂对溶液中的丁二酸(25 mg·ml-1)有很好的吸附作用,吸附量高达425 mg·(g干树脂)-1。当解吸温度为50℃,每个阶段用10 ml、1.0 mol·L-1 HCl解吸剂,两阶段解吸3 g吸附饱和的树脂,第1阶段解吸得到的丁二酸浓度可高达52.4 mg·ml-1,将丁二酸浓度提高到原液浓度的209.6%;在此基础上再进行分段循环解吸,不仅可以维持第1阶段获得的高浓度丁二酸,且可同时获得第2阶段2倍收率的高浓度丁二酸,达到了高浓度、高效率解吸丁二酸的目的。另研究表明,分段循环解吸液再作为解吸剂,其中丁二酸的浓度对丁二酸解吸效果没有明显影响。
建立瞭一種有效的、低能耗的從梳狀弱堿性(MKF-D30X)樹脂上解吸丁二痠的工藝。攷察瞭解吸劑用量(體積)、解吸溫度、分段解吸及分段循環解吸對MKF-D30X樹脂解吸附丁二痠的影響。結果錶明,MKF-D30X樹脂對溶液中的丁二痠(25 mg·ml-1)有很好的吸附作用,吸附量高達425 mg·(g榦樹脂)-1。噹解吸溫度為50℃,每箇階段用10 ml、1.0 mol·L-1 HCl解吸劑,兩階段解吸3 g吸附飽和的樹脂,第1階段解吸得到的丁二痠濃度可高達52.4 mg·ml-1,將丁二痠濃度提高到原液濃度的209.6%;在此基礎上再進行分段循環解吸,不僅可以維持第1階段穫得的高濃度丁二痠,且可同時穫得第2階段2倍收率的高濃度丁二痠,達到瞭高濃度、高效率解吸丁二痠的目的。另研究錶明,分段循環解吸液再作為解吸劑,其中丁二痠的濃度對丁二痠解吸效果沒有明顯影響。
건립료일충유효적、저능모적종소상약감성(MKF-D30X)수지상해흡정이산적공예。고찰료해흡제용량(체적)、해흡온도、분단해흡급분단순배해흡대MKF-D30X수지해흡부정이산적영향。결과표명,MKF-D30X수지대용액중적정이산(25 mg·ml-1)유흔호적흡부작용,흡부량고체425 mg·(g간수지)-1。당해흡온도위50℃,매개계단용10 ml、1.0 mol·L-1 HCl해흡제,량계단해흡3 g흡부포화적수지,제1계단해흡득도적정이산농도가고체52.4 mg·ml-1,장정이산농도제고도원액농도적209.6%;재차기출상재진행분단순배해흡,불부가이유지제1계단획득적고농도정이산,차가동시획득제2계단2배수솔적고농도정이산,체도료고농도、고효솔해흡정이산적목적。령연구표명,분단순배해흡액재작위해흡제,기중정이산적농도대정이산해흡효과몰유명현영향。
An effective and low energy consumption method was established for absorption and circulating desorption of succinic acid using a comb-like weak base polystyrene resin. The behavior of the comblike weak base resin (MKF-D30X) in adsorption and desorption of succinic acid was studied in terms of volume of desorption reagent, stages of desorption, desorption temperature and recycle desorption. MKF-D30X resin had good adsorption effect on succinic acid. And the maximum adsorption capacity could be up to 425 mg succinic acid·(g dry resin)-1. The desorption process for 3 g resin with saturated succinic acid was divided into two stages at 50℃ of each stage of 10 ml, 1.0 mol·L-1 HCl as desorption reagent. In the first stage, the concentration of succinic acid in desorption solution could be up to 52.4 mg·ml-1, and the concentration of succinic acid increased to 209.6% of original concentration (original concentration of 25 mg·ml-1). Recycle desorption not only maintained high concentration of succinic acid in the first stage of desorption, but also obtained twice concentration in the second stage. On the other hand, the concentration of succinic acid in the first desorption stage, as desorption reagent, had no obvious effect on desorption of succinic acid in next stage.