化工学报
化工學報
화공학보
JOURNAL OF CHEMICAL INDUSY AND ENGINEERING (CHINA)
2014年
5期
1680-1687
,共8页
周建海%赵会玲%胡军%刘洪来%胡英
週建海%趙會玲%鬍軍%劉洪來%鬍英
주건해%조회령%호군%류홍래%호영
分子模拟%二氧化碳吸附%氨基修饰%微孔/介孔材料%选择性
分子模擬%二氧化碳吸附%氨基脩飾%微孔/介孔材料%選擇性
분자모의%이양화탄흡부%안기수식%미공/개공재료%선택성
molecular simulation%CO2 adsorption%amine modification%micro/mesoporous%selectivity
构建了氨基修饰微孔/介孔复合材料AM-5A-MCM-41的全原子模型,采用巨正则Monte Carlo(GCMC)方法研究了它的CO2吸附分离性能,采用加权混合规则来描述氨基和CO2分子的弱化学作用。模拟结果表明,CO2分子优先吸附在复合材料介孔表面的氨基附近,CO2纯气体的吸附量和吸附热有了显著提高,而N2的吸附量和吸附热则基本不受影响。对于CO2和N2的混合气分离,由于复合材料对CO2的弱化学吸附作用,显著提高了CO2吸附量和吸附选择性,在573 K和100 kPa时CO2/N2的选择性达到了87.0。通过分子模拟研究可以从微观角度了解 CO2在氨基修饰的微孔/介孔复合材料中的吸附分离的细节和机理,为实验设计和合成高效 CO2吸附剂提供指导。
構建瞭氨基脩飾微孔/介孔複閤材料AM-5A-MCM-41的全原子模型,採用巨正則Monte Carlo(GCMC)方法研究瞭它的CO2吸附分離性能,採用加權混閤規則來描述氨基和CO2分子的弱化學作用。模擬結果錶明,CO2分子優先吸附在複閤材料介孔錶麵的氨基附近,CO2純氣體的吸附量和吸附熱有瞭顯著提高,而N2的吸附量和吸附熱則基本不受影響。對于CO2和N2的混閤氣分離,由于複閤材料對CO2的弱化學吸附作用,顯著提高瞭CO2吸附量和吸附選擇性,在573 K和100 kPa時CO2/N2的選擇性達到瞭87.0。通過分子模擬研究可以從微觀角度瞭解 CO2在氨基脩飾的微孔/介孔複閤材料中的吸附分離的細節和機理,為實驗設計和閤成高效 CO2吸附劑提供指導。
구건료안기수식미공/개공복합재료AM-5A-MCM-41적전원자모형,채용거정칙Monte Carlo(GCMC)방법연구료타적CO2흡부분리성능,채용가권혼합규칙래묘술안기화CO2분자적약화학작용。모의결과표명,CO2분자우선흡부재복합재료개공표면적안기부근,CO2순기체적흡부량화흡부열유료현저제고,이N2적흡부량화흡부열칙기본불수영향。대우CO2화N2적혼합기분리,유우복합재료대CO2적약화학흡부작용,현저제고료CO2흡부량화흡부선택성,재573 K화100 kPa시CO2/N2적선택성체도료87.0。통과분자모의연구가이종미관각도료해 CO2재안기수식적미공/개공복합재료중적흡부분리적세절화궤리,위실험설계화합성고효 CO2흡부제제공지도。
Combining the advantages of high selectivity of amine groups, high capacity of microporous zeolite, and high transportation of mesoporous structures, amine modified micro/mesoporous composites may exhibit promising CO2 adsorption capability. In this study, a full-atomic mimetic amine modified micro/mesoporous composite of AM-5A-MCM-41 was constructed. CO2 adsorption and separation performance on AM-5A- MCM-41 composite were investigated by the grand canonical Monte Carlo (GCMC), in which a specific combining rule was used to describe the weak chemical interaction between CO2 molecule and amine group. The simulation results demonstrate that CO2 is preferentially adsorbed around amine groups, which is grafted at the surface of mesoporous channels; and the CO2 adsorption capacity and its isosteric heat are greatly improved on AM-5A-MCM-41, whereas those of N2 are almost kept unchanged. For the separation of mixed gas of CO2 and N2, both CO2 adsorption capacity and CO2/N2 selectivity are greatly improved, due to the enhanced interaction between CO2 molecules and amine groups. The chemisorption plays a significant role in the capture of CO2 at low pressures and high temperature, giving a selectivity as high as 87.0 at 573 K and 100 kPa. The overall results show that molecular simulations serve as a powerful implement to assist the design and development of new promising CO2 adsorbents, highlighting the importance of this approach.