桂林电子科技大学学报
桂林電子科技大學學報
계림전자과기대학학보
JOURNAL OF GUILIN UNIVERSITY OF ELECTRONIC TECHNOLOGY
2014年
2期
156-161
,共6页
孤立波%孤立波型解%紧解%广义(2+1 )维BKP方程
孤立波%孤立波型解%緊解%廣義(2+1 )維BKP方程
고립파%고립파형해%긴해%엄의(2+1 )유BKP방정
solitary wave%solitary patterns solution%compactons solution%generalized (2+1)-dimensional BKP equation
为求解一类典型的非线性微分方程---广义(2+1)维BKP方程,利用 sine-cosine方法和 tanh方法,求得该方程的一系列精确解,包括孤立波解、孤立波型解和紧解。通过方程的求解,证明 sine-cosine方法和 tanh方法是求解非线性数学物理方程的有力工具。
為求解一類典型的非線性微分方程---廣義(2+1)維BKP方程,利用 sine-cosine方法和 tanh方法,求得該方程的一繫列精確解,包括孤立波解、孤立波型解和緊解。通過方程的求解,證明 sine-cosine方法和 tanh方法是求解非線性數學物理方程的有力工具。
위구해일류전형적비선성미분방정---엄의(2+1)유BKP방정,이용 sine-cosine방법화 tanh방법,구득해방정적일계렬정학해,포괄고립파해、고립파형해화긴해。통과방정적구해,증명 sine-cosine방법화 tanh방법시구해비선성수학물리방정적유력공구。
The sine-cosine method and tanh method are used to construct exact solitary wave,solitary pattern and compacton solutions of the generalized (2+1)-dimensional nonlinear evolution equation.The compacton solutions,solitary wave solu-tions,and solitary pattern solutions of the generalized (2+1)-dimensional BKP equation are obtained.It is shown that the sine-cosine method tanh method are powerful tools for solving a great many nonlinear partial differential equations in mathe-matical physics.