化学反应工程与工艺
化學反應工程與工藝
화학반응공정여공예
CHEMICAL REACTION ENGINEERING AND TECHNOLOGY
2014年
2期
150-155
,共6页
重整芳烃%脱烯烃%固体酸催化剂%失活动力学%催化剂再生
重整芳烴%脫烯烴%固體痠催化劑%失活動力學%催化劑再生
중정방경%탈희경%고체산최화제%실활동역학%최화제재생
reforming aromatic hydrocarbon%olefins removal%solid acid catalyst%deactivated kinetics%catalyst regeneration
为开发环境友好的重整芳烃脱烯烃工艺,采用固定床反应装置进行了重整重芳烃脱烯烃杂质的固体酸催化反应工艺研究。研究结果表明,催化剂活性稳定性随着热处理温度升高而逐渐提高,烯烃转化率随着反应温度升高或空速降低而增大。在温度240℃、压力2.0 MPa、质量空速1.0 h-1反应条件下,用300℃热处理催化剂进行持续90天的芳烃脱烯烃反应,烯烃转化率从91.4%降低到85.8%。芳烃脱烯烃反应不影响芳烃组成。在温度220~260℃、压力3.0 MPa、质量空速1.0 h-1条件下考察催化剂活性稳定性,经120天持续反应精制产物溴指数保持在100 mg-Br/100 g以下,烯烃转化率大于88%。对失活催化剂分别进行乙醇和二氯甲烷器内洗涤再生,以及器内空气烧焦再生,三种再生催化剂的活性均接近新鲜催化剂活性水平。所开发的重整芳烃精制新工艺具有良好的应用前景。
為開髮環境友好的重整芳烴脫烯烴工藝,採用固定床反應裝置進行瞭重整重芳烴脫烯烴雜質的固體痠催化反應工藝研究。研究結果錶明,催化劑活性穩定性隨著熱處理溫度升高而逐漸提高,烯烴轉化率隨著反應溫度升高或空速降低而增大。在溫度240℃、壓力2.0 MPa、質量空速1.0 h-1反應條件下,用300℃熱處理催化劑進行持續90天的芳烴脫烯烴反應,烯烴轉化率從91.4%降低到85.8%。芳烴脫烯烴反應不影響芳烴組成。在溫度220~260℃、壓力3.0 MPa、質量空速1.0 h-1條件下攷察催化劑活性穩定性,經120天持續反應精製產物溴指數保持在100 mg-Br/100 g以下,烯烴轉化率大于88%。對失活催化劑分彆進行乙醇和二氯甲烷器內洗滌再生,以及器內空氣燒焦再生,三種再生催化劑的活性均接近新鮮催化劑活性水平。所開髮的重整芳烴精製新工藝具有良好的應用前景。
위개발배경우호적중정방경탈희경공예,채용고정상반응장치진행료중정중방경탈희경잡질적고체산최화반응공예연구。연구결과표명,최화제활성은정성수착열처리온도승고이축점제고,희경전화솔수착반응온도승고혹공속강저이증대。재온도240℃、압력2.0 MPa、질량공속1.0 h-1반응조건하,용300℃열처리최화제진행지속90천적방경탈희경반응,희경전화솔종91.4%강저도85.8%。방경탈희경반응불영향방경조성。재온도220~260℃、압력3.0 MPa、질량공속1.0 h-1조건하고찰최화제활성은정성,경120천지속반응정제산물추지수보지재100 mg-Br/100 g이하,희경전화솔대우88%。대실활최화제분별진행을순화이록갑완기내세조재생,이급기내공기소초재생,삼충재생최화제적활성균접근신선최화제활성수평。소개발적중정방경정제신공예구유량호적응용전경。
To develop an environmentally friendly technology of trace olefins removal for reforming aromatic hydrocarbons, the reaction process for the removal of trace olefins from reforming heavy aromatic hydrocarbons over solid acid catalyst was studied in a fix-bed reactor. With the increase of catalyst heat treatment temperature, the catalyst could have better activity stability. With increase of reaction temperature and decrease of weight-hourly space velocity (WHSV), the conversion of olefins increased. Under the reaction conditions of temperature of 240 ℃, pressure of 2.0 MPa, WHSV of 1.0 h-1, the conversion of olefins drops from 91.4%to 85.8%through time on streams of 90 days with the catalyst treated in nitrogen flow of 300 ℃. The aromatic hydrocarbons refinement did not affect the components of the aromatic mixtures. The bromine index of refined aromatics maintained below levels of 100 mg-Br/100 g and the olefins conversion maintained more than 88% through time on stream of 120 days under the reaction conditions of temperature of 220-260 ℃, pressure of 3.0 MPa, WHSV of 1.0 h-1. The coking deactivated catalysts were regenerated in situ through extraction with alcohol or dichloromethane, and through burning in air stream. The catalytic activities of three kinds of regenerated catalysts were all close to the catalytic activity of new catalyst. The new refined technology for reforming aromatics has a good application prospect.