岩土力学
巖土力學
암토역학
ROCK AND SOIL MECHANICS
2014年
4期
1041-1048,1055
,共9页
周嵩%陈益峰%张勤%郑华康%周创兵
週嵩%陳益峰%張勤%鄭華康%週創兵
주숭%진익봉%장근%정화강%주창병
非饱和土%有效热传导系数%高放废物地质处置%膨润土
非飽和土%有效熱傳導繫數%高放廢物地質處置%膨潤土
비포화토%유효열전도계수%고방폐물지질처치%팽윤토
unsaturated soil%coefficient of effective thermal conductivity%high-level radioactive waste disposal%bentonite
膨润土缓冲材料热传导特性的研究,对于高放废物深地质处置系统的安全评价至关重要。基于串、并联原理,通过将土体孔隙划分为与固相基质并联和串联两部分,提出了考虑矿物成分、颗粒亲水性、孔隙率及饱和度等因素的非饱和膨润土有效热传导系数的4种预测形式,建立了基于4种形式线性组合的有效热传导特性预测模型。详细讨论了模型参数的确定方法,并讨论了孔隙率、饱和度和孔隙结构、颗粒亲水性等因素对土体有效热传导特性的影响。基于MX-80膨润土和高庙子膨润土热传导特性试验成果,对模型的预测性能进行了验证。结果表明,由于膨润土颗粒尺寸较小且具有亲水特性,孔隙内的空气与水宜采用并联描述。研究成果对于非饱和膨润土的导热性能以及工程屏障系统的THM耦合数值模拟研究具有一定的参考价值。
膨潤土緩遲材料熱傳導特性的研究,對于高放廢物深地質處置繫統的安全評價至關重要。基于串、併聯原理,通過將土體孔隙劃分為與固相基質併聯和串聯兩部分,提齣瞭攷慮礦物成分、顆粒親水性、孔隙率及飽和度等因素的非飽和膨潤土有效熱傳導繫數的4種預測形式,建立瞭基于4種形式線性組閤的有效熱傳導特性預測模型。詳細討論瞭模型參數的確定方法,併討論瞭孔隙率、飽和度和孔隙結構、顆粒親水性等因素對土體有效熱傳導特性的影響。基于MX-80膨潤土和高廟子膨潤土熱傳導特性試驗成果,對模型的預測性能進行瞭驗證。結果錶明,由于膨潤土顆粒呎吋較小且具有親水特性,孔隙內的空氣與水宜採用併聯描述。研究成果對于非飽和膨潤土的導熱性能以及工程屏障繫統的THM耦閤數值模擬研究具有一定的參攷價值。
팽윤토완충재료열전도특성적연구,대우고방폐물심지질처치계통적안전평개지관중요。기우천、병련원리,통과장토체공극화분위여고상기질병련화천련량부분,제출료고필광물성분、과립친수성、공극솔급포화도등인소적비포화팽윤토유효열전도계수적4충예측형식,건립료기우4충형식선성조합적유효열전도특성예측모형。상세토론료모형삼수적학정방법,병토론료공극솔、포화도화공극결구、과립친수성등인소대토체유효열전도특성적영향。기우MX-80팽윤토화고묘자팽윤토열전도특성시험성과,대모형적예측성능진행료험증。결과표명,유우팽윤토과립척촌교소차구유친수특성,공극내적공기여수의채용병련묘술。연구성과대우비포화팽윤토적도열성능이급공정병장계통적THM우합수치모의연구구유일정적삼고개치。
Bentonites have been widely adopted as the buffer/backfill materials for repositories of high-level radioactive waste disposal. Characterization of the effective thermal conductivity of the buffer materials is of great importance for optimization design and safety assessments of the repositories. Using the concept of the series-parallel structural models, the porosity of soils is decomposed into two components:one in parallel and the other in series connected to the solid phase. An effective structure depends on the decomposition is introduced to describe the heat transfer process of the porous soils considering the structural connections of pores and the solid phase. On this basis, four formulas which represent different series-parallel arrangements of pore fluids (water and air mixture) are proposed to predict thermal conductivity of unsaturated soils with a comprehensive consideration of the effects of mineralogical composition, porosity and saturation. An effective model for thermal conductivity of unsaturated soil is then developed based on a linear composition of the four formulas. Parameterization of the model is discussed;and the behaviors of the model with respect to the variations in porosity and saturation are illustrated. The model is validated against experimental data of thermal conductivity of MX-80 and Gaomiaozi bentonites. The results show that the arrangement of air and water in the pores tended to be in parallel connection for unsaturated bentonites because of the fine size and wettability of the soil particles. This research may provide a helpful reference for predicting thermal conductivity of unsaturated bentonites and numerical modeling of the coupled thermo-hydro-mechanical (THM) processes in the engineered barrier systems.