生态环境学报
生態環境學報
생태배경학보
ECOLOGY AND ENVIRONMENT
2014年
2期
307-311
,共5页
袁艺宁%杨志辉%柴立元%周颖新
袁藝寧%楊誌輝%柴立元%週穎新
원예저%양지휘%시립원%주영신
铅锌冶炼厂%铅污染%土壤%渣堆场
鉛鋅冶煉廠%鉛汙染%土壤%渣堆場
연자야련엄%연오염%토양%사퇴장
lead and zinc smelting%lead pollution%soil%slag yard
金属冶炼过程留下的废渣经过雨水冲刷及渗滤液等的作用使残留在废渣中的重金属发生迁移转化,导致渣堆场下及周边土壤受到重金属污染。了解冶炼厂渣堆场下及周边土壤重金属污染状况对场地修复及土地利用规划均有重大意义。本研究调查了湖南某铅锌冶炼厂渣堆场0~4 km内三个采样区0~20 cm表层土壤及0~100 cm深度土壤中铅的污染状况,采用单项污染指数法进行铅污染评价,并分析了铅纵向迁移随深度变化和横向迁移随距离变化的分布特征。结果表明,铅锌冶炼厂渣堆场下及周边0~1 km范围内土壤受到了铅污染,渣堆场下、距渣堆场10 m处及1 km处表层土壤中重金属铅的质量分数分别可达775.25、645.33和309.80 mg·kg-1,超过了当地土壤中铅的背景值,也超过了土壤二级质量标准甚至三级质量标准。三个采样区的铅污染指数分别为2.6、2.1及1.03,污染等级均为Ⅱ级,污染程度为轻度污染。三个采样区土壤中铅污染主要集中于0~20 cm土壤层中,铅的质量分数分别达775.25,645.33和309.80 mg·kg-1,20~100 cm土壤层中铅的质量分数低于0~20 cm的,分别在88.48~120.96 mg·kg-1、235.01~380.16 mg·kg-1及309.80~59.32 mg·kg-1之间。渣堆场下土壤中的铅从0~20cm土壤层往下至20~100cm土壤层迁移量远小于距渣场10 m处及1 km处的。三个采样区表层0~20 cm土壤层中铅的变化规律为距渣堆场0 m(渣堆场下)>距渣堆场10 m>距渣堆场1 km>距渣堆场4 km,质量分数随距离增加而降低。20~40 cm及40~60 cm土壤层中铅的变化规律为距渣堆场10 m>距渣堆场1 km>距渣堆场0 m处(渣堆场下)>距渣堆场4 km,60~80 cm及80~100 cm土壤层的变化规律为距渣堆场10 m>距渣堆场0 m处(渣堆场下)>距渣堆场1 km>距渣堆场4 km,铅的质量分数随距离的增加先升高后降低。
金屬冶煉過程留下的廢渣經過雨水遲刷及滲濾液等的作用使殘留在廢渣中的重金屬髮生遷移轉化,導緻渣堆場下及週邊土壤受到重金屬汙染。瞭解冶煉廠渣堆場下及週邊土壤重金屬汙染狀況對場地脩複及土地利用規劃均有重大意義。本研究調查瞭湖南某鉛鋅冶煉廠渣堆場0~4 km內三箇採樣區0~20 cm錶層土壤及0~100 cm深度土壤中鉛的汙染狀況,採用單項汙染指數法進行鉛汙染評價,併分析瞭鉛縱嚮遷移隨深度變化和橫嚮遷移隨距離變化的分佈特徵。結果錶明,鉛鋅冶煉廠渣堆場下及週邊0~1 km範圍內土壤受到瞭鉛汙染,渣堆場下、距渣堆場10 m處及1 km處錶層土壤中重金屬鉛的質量分數分彆可達775.25、645.33和309.80 mg·kg-1,超過瞭噹地土壤中鉛的揹景值,也超過瞭土壤二級質量標準甚至三級質量標準。三箇採樣區的鉛汙染指數分彆為2.6、2.1及1.03,汙染等級均為Ⅱ級,汙染程度為輕度汙染。三箇採樣區土壤中鉛汙染主要集中于0~20 cm土壤層中,鉛的質量分數分彆達775.25,645.33和309.80 mg·kg-1,20~100 cm土壤層中鉛的質量分數低于0~20 cm的,分彆在88.48~120.96 mg·kg-1、235.01~380.16 mg·kg-1及309.80~59.32 mg·kg-1之間。渣堆場下土壤中的鉛從0~20cm土壤層往下至20~100cm土壤層遷移量遠小于距渣場10 m處及1 km處的。三箇採樣區錶層0~20 cm土壤層中鉛的變化規律為距渣堆場0 m(渣堆場下)>距渣堆場10 m>距渣堆場1 km>距渣堆場4 km,質量分數隨距離增加而降低。20~40 cm及40~60 cm土壤層中鉛的變化規律為距渣堆場10 m>距渣堆場1 km>距渣堆場0 m處(渣堆場下)>距渣堆場4 km,60~80 cm及80~100 cm土壤層的變化規律為距渣堆場10 m>距渣堆場0 m處(渣堆場下)>距渣堆場1 km>距渣堆場4 km,鉛的質量分數隨距離的增加先升高後降低。
금속야련과정류하적폐사경과우수충쇄급삼려액등적작용사잔류재폐사중적중금속발생천이전화,도치사퇴장하급주변토양수도중금속오염。료해야련엄사퇴장하급주변토양중금속오염상황대장지수복급토지이용규화균유중대의의。본연구조사료호남모연자야련엄사퇴장0~4 km내삼개채양구0~20 cm표층토양급0~100 cm심도토양중연적오염상황,채용단항오염지수법진행연오염평개,병분석료연종향천이수심도변화화횡향천이수거리변화적분포특정。결과표명,연자야련엄사퇴장하급주변0~1 km범위내토양수도료연오염,사퇴장하、거사퇴장10 m처급1 km처표층토양중중금속연적질량분수분별가체775.25、645.33화309.80 mg·kg-1,초과료당지토양중연적배경치,야초과료토양이급질량표준심지삼급질량표준。삼개채양구적연오염지수분별위2.6、2.1급1.03,오염등급균위Ⅱ급,오염정도위경도오염。삼개채양구토양중연오염주요집중우0~20 cm토양층중,연적질량분수분별체775.25,645.33화309.80 mg·kg-1,20~100 cm토양층중연적질량분수저우0~20 cm적,분별재88.48~120.96 mg·kg-1、235.01~380.16 mg·kg-1급309.80~59.32 mg·kg-1지간。사퇴장하토양중적연종0~20cm토양층왕하지20~100cm토양층천이량원소우거사장10 m처급1 km처적。삼개채양구표층0~20 cm토양층중연적변화규률위거사퇴장0 m(사퇴장하)>거사퇴장10 m>거사퇴장1 km>거사퇴장4 km,질량분수수거리증가이강저。20~40 cm급40~60 cm토양층중연적변화규률위거사퇴장10 m>거사퇴장1 km>거사퇴장0 m처(사퇴장하)>거사퇴장4 km,60~80 cm급80~100 cm토양층적변화규률위거사퇴장10 m>거사퇴장0 m처(사퇴장하)>거사퇴장1 km>거사퇴장4 km,연적질량분수수거리적증가선승고후강저。
The soils around the slag yard in smeltery are contaminated by heavy metals which in smelting waste are transfered and transformed by rain washing and filtrating. Survey the soil contamination characteristics has great significance to remediation and utilization. Lead pollution in the soil around the slag yard in lead and zinc smeltery in hunan province was surveyed. The survey fields include the 0~100 cm depths soil in the range of 0 to 4 km distance from the slag yard. Lead pollution was assessed by the single pollution index method. The distribution characteristics of lead pollution changing with the level distance and the vertical distance were analyzed. The result indicates that the soil in the range of 0 to 1 km distance from the slag yard is polluted by lead, The lead concentrations in the soil under the slag yard, 10 m and 1 km from the slag yard reached 775.25, 645.33 and 309.80 mg·kg-1. The concentrations were much higher then the values of the soil background and also much higher than the values of soil quality standard of grade two and three. The lead pollution indexes in the three sampling regions are 2.6, 2.1 and 1.03. The pollution levels are all grade Ⅱ, those belong to light pollution. In the three sampling regions, the lead concentrate in the 0~20 cm depths soil layers, the lead mass fraction reached 775.25, 645.33 and 309.80 mg·kg-1, respectively. The lead in the 20~100 cm depth soil layer are less than those in the 20~100 cm depth soil layer, the lead mass fraction are only about 88.48~120.96, 235.01~380.16 and 309.80~59.32 mg·kg-1. The lead transport quantities from 0~20 cm depth soil layer to the 20~100 cm depth soil layer under the slag yard are much less than those in 10 m and 1 km distance from the slag yard. The lead mass fractions of the 0~20 cm depth soil layer in the three sampling regions reduce with the increasing distance, the change law is 0 m distance from the slag yard(under the slag yard)>10 m distance from the slag yard>1 km distance from the slag yard>4 km distance from the slag yard. The lead mass fractions of 20~40 cm and 40~60 cm depth soil layer increase firstly and then reduce, the change law is 10 m distance from the slag yard > 1 km distance from the slag yard>0 m (under the slag yard) distance from the slag yard>4 km distance from the slag yard. The lead mass fractions of 60~80 cm and 80~100 cm increase firstly and then reduce with the increasing distance, the change law is 10 m distance from the slag yard>0 m distance from the slag yard (under the slag yard)>1 km distance from the slag yard>4 km distance from the slag yard.