计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2014年
10期
221-226,237
,共7页
R学习%合同网%多Agent合作%实时调度
R學習%閤同網%多Agent閤作%實時調度
R학습%합동망%다Agent합작%실시조도
R-learning%contract net protocol%multi-agent cooperation%real-time schedule
提出一种融入合同网运行机制的R学习方法,以此方法为核心构造Agent形成具有学习能力的实时调度模型。模型以最小化作业累计平均流动比为主要目标,同时借助对强化学习报酬的设计减小机器负载的不均衡性,实现对调度过程的双重优化;构造实时调度实例投入测试的结果证明了模型的绩效。另外,一个包含强化学习Agent与无学习Agent的混合机器环境被构建并测试其性能,测试结果表明:在Agent之间借助强化学习过程形成了某种隐性的合作,正是这种合作保证了高质量实时调度方案的输出。
提齣一種融入閤同網運行機製的R學習方法,以此方法為覈心構造Agent形成具有學習能力的實時調度模型。模型以最小化作業纍計平均流動比為主要目標,同時藉助對彊化學習報酬的設計減小機器負載的不均衡性,實現對調度過程的雙重優化;構造實時調度實例投入測試的結果證明瞭模型的績效。另外,一箇包含彊化學習Agent與無學習Agent的混閤機器環境被構建併測試其性能,測試結果錶明:在Agent之間藉助彊化學習過程形成瞭某種隱性的閤作,正是這種閤作保證瞭高質量實時調度方案的輸齣。
제출일충융입합동망운행궤제적R학습방법,이차방법위핵심구조Agent형성구유학습능력적실시조도모형。모형이최소화작업루계평균류동비위주요목표,동시차조대강화학습보수적설계감소궤기부재적불균형성,실현대조도과정적쌍중우화;구조실시조도실례투입측시적결과증명료모형적적효。령외,일개포함강화학습Agent여무학습Agent적혼합궤기배경피구건병측시기성능,측시결과표명:재Agent지간차조강화학습과정형성료모충은성적합작,정시저충합작보증료고질량실시조도방안적수출。
This paper proposes a real-time scheduling model based on contract net protocol structure employing reinforce-ment learning agents. To this end, an R-learning procedure is elaborated and embedded in machine agents’decision process, enabling them to treat bid-invitations in more complicated way than in a simple contract net protocol environment. Efficiency of the proposed method is verified through experiments in a simulated real-time scheduling environment. Furthermore, the performance of mixed machine groups which comprises both reinforcement learning agents and non-reinforcement-learning agents shows that there is spontaneous implicit teamwork occurring between reinforcement learning agents, and this team-work guarantees high quality output of the scheduling model.