计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2014年
10期
52-56
,共5页
潘少伟%梁鸿军%李良%王家华
潘少偉%樑鴻軍%李良%王傢華
반소위%량홍군%리량%왕가화
改进PSO-BP神经网络%惯性权重因子%储层参数%预测
改進PSO-BP神經網絡%慣性權重因子%儲層參數%預測
개진PSO-BP신경망락%관성권중인자%저층삼수%예측
improved PSO-BP neural network%inertia weight factor%reservoir parameter%predication
为提高BP神经网络的收敛速度和泛化能力,防止其陷入局部最优值,在前人工作基础上对传统粒子群算法进行了改进,具体包括:设定最大限制速度、改变惯性权重因子和改进适应度函数,并把改进粒子群算法应用于BP神经网络权值和阈值的优化。之后利用改进粒子群算法优化的BP神经网络实现对储层参数的动态预测,具体步骤为:确定神经网络的输入、输出神经元,定量化时间参数T,利用训练样本构建神经网络模型并进行检验。最后通过平均训练误差对仿真过程进行分析,结果表明改进PSO-BP算法的收敛性与泛化能力均优于BP算法和PSO-BP算法。
為提高BP神經網絡的收斂速度和汎化能力,防止其陷入跼部最優值,在前人工作基礎上對傳統粒子群算法進行瞭改進,具體包括:設定最大限製速度、改變慣性權重因子和改進適應度函數,併把改進粒子群算法應用于BP神經網絡權值和閾值的優化。之後利用改進粒子群算法優化的BP神經網絡實現對儲層參數的動態預測,具體步驟為:確定神經網絡的輸入、輸齣神經元,定量化時間參數T,利用訓練樣本構建神經網絡模型併進行檢驗。最後通過平均訓練誤差對倣真過程進行分析,結果錶明改進PSO-BP算法的收斂性與汎化能力均優于BP算法和PSO-BP算法。
위제고BP신경망락적수렴속도화범화능력,방지기함입국부최우치,재전인공작기출상대전통입자군산법진행료개진,구체포괄:설정최대한제속도、개변관성권중인자화개진괄응도함수,병파개진입자군산법응용우BP신경망락권치화역치적우화。지후이용개진입자군산법우화적BP신경망락실현대저층삼수적동태예측,구체보취위:학정신경망락적수입、수출신경원,정양화시간삼수T,이용훈련양본구건신경망락모형병진행검험。최후통과평균훈련오차대방진과정진행분석,결과표명개진PSO-BP산법적수렴성여범화능력균우우BP산법화PSO-BP산법。
In order to improve the convergence speed and generalization ability of BP neural network and prevent it from falling into local optimal value, the traditional particle swarm optimization algorithm is improved in three aspects based on the previous research, including the limit of the maximum speed, the changes of the inertia weight factor and the improve-ment of the fitness function. Then it is used to optimize the weight and threshold of the BP neural network. And the dynamic prediction on reservoir parameter is realized by the improved PSO-BP neural network, the whole process is determining the input and output neurons, quantitating the time parameter, constructing the neural network model with the training samples and testing it. Finally, the simulation results of the average training error is analyzed, and it proves that the conver-gence and generalization ability of the improved PSO-BP algorithm are better than the BP algorithm and PSO-BP algorithm.