天津医药
天津醫藥
천진의약
TIANJIN MEDICAL JOURNAL
2014年
5期
414-416
,共3页
乳腺肿瘤%基因表达%芯片分析技术%基因表达谱%预测%早期诊断%通路
乳腺腫瘤%基因錶達%芯片分析技術%基因錶達譜%預測%早期診斷%通路
유선종류%기인표체%심편분석기술%기인표체보%예측%조기진단%통로
breast neoplasms%gene expression%microchip analytical procedures%gene expression profiling%forecast-ing%early diagnosis%pathway
目的:探索组织学正常的乳腺上皮组织中的异常基因对于乳腺癌早期诊断的意义。方法应用基因芯片技术对乳腺癌患者组织学正常的上皮细胞和正常人的上皮细胞进行生物信息学分析,找寻异常表达的基因。并以差异表达基因建立乳腺癌早期诊断模型,用信号通路富集的方法筛选差异表达基因。用准确度(Ac)、敏感度(Sn)以及特异度(Sp)衡量不同方法的预测精度。结果差异表达基因主要富集在转录以及MAPK信号通路上。用KEGG信号通路中富集到的基因作为特征值建立模型的预测精度优于BioCarta信号通路。将KEGG和BioCarta中富集到的基因合并起来共同作为特征值,其预测精度与将所有差异表达基因作为特征值建立的模型精度一致(Ac:96.3%;Sn:92.3%;Sp:100%),但是特征值却分别从22个缩减到7个,14个缩减到3个,18个缩减到4个。KEGG和BioCarta中富集到的基因包括JUN、DUSP1、BTG2、FOSB、JUND、E1F1和FOS。结论用通路富集的方法过滤差异表达基因,可在保证预测精度的前提下简化预测模型;KEGG和BioCarta中富集到的基因表达水平可作为乳腺癌的早期诊断标准。
目的:探索組織學正常的乳腺上皮組織中的異常基因對于乳腺癌早期診斷的意義。方法應用基因芯片技術對乳腺癌患者組織學正常的上皮細胞和正常人的上皮細胞進行生物信息學分析,找尋異常錶達的基因。併以差異錶達基因建立乳腺癌早期診斷模型,用信號通路富集的方法篩選差異錶達基因。用準確度(Ac)、敏感度(Sn)以及特異度(Sp)衡量不同方法的預測精度。結果差異錶達基因主要富集在轉錄以及MAPK信號通路上。用KEGG信號通路中富集到的基因作為特徵值建立模型的預測精度優于BioCarta信號通路。將KEGG和BioCarta中富集到的基因閤併起來共同作為特徵值,其預測精度與將所有差異錶達基因作為特徵值建立的模型精度一緻(Ac:96.3%;Sn:92.3%;Sp:100%),但是特徵值卻分彆從22箇縮減到7箇,14箇縮減到3箇,18箇縮減到4箇。KEGG和BioCarta中富集到的基因包括JUN、DUSP1、BTG2、FOSB、JUND、E1F1和FOS。結論用通路富集的方法過濾差異錶達基因,可在保證預測精度的前提下簡化預測模型;KEGG和BioCarta中富集到的基因錶達水平可作為乳腺癌的早期診斷標準。
목적:탐색조직학정상적유선상피조직중적이상기인대우유선암조기진단적의의。방법응용기인심편기술대유선암환자조직학정상적상피세포화정상인적상피세포진행생물신식학분석,조심이상표체적기인。병이차이표체기인건립유선암조기진단모형,용신호통로부집적방법사선차이표체기인。용준학도(Ac)、민감도(Sn)이급특이도(Sp)형량불동방법적예측정도。결과차이표체기인주요부집재전록이급MAPK신호통로상。용KEGG신호통로중부집도적기인작위특정치건립모형적예측정도우우BioCarta신호통로。장KEGG화BioCarta중부집도적기인합병기래공동작위특정치,기예측정도여장소유차이표체기인작위특정치건립적모형정도일치(Ac:96.3%;Sn:92.3%;Sp:100%),단시특정치각분별종22개축감도7개,14개축감도3개,18개축감도4개。KEGG화BioCarta중부집도적기인포괄JUN、DUSP1、BTG2、FOSB、JUND、E1F1화FOS。결론용통로부집적방법과려차이표체기인,가재보증예측정도적전제하간화예측모형;KEGG화BioCarta중부집도적기인표체수평가작위유선암적조기진단표준。
Objective To investigate the significance of abnormal gene in histologically normal mammary epithelial tissue for the early diagnosis of breast cancer. Methods Microarray technology was used to identify abnormal gene expres-sion and analyzed bioinformatics of normal mammary epithelial tissue in breast cancer patients and healthy normal control to establish a model for early diagnosis of breast cancer. The differentially expressed genes were screened by using signal path-way enrichment analysis. The accuracy (Ac), sensitivity (Sn) and specificity (Sp) were used to measure the prediction accura-cy of the different methods. Results The best prediction model was derived from the combination of differential genes en-riched from KEGG and BioCarta database. The number of differential expressed genes in three random created prediction models was reduced from 22 to 7, 14 to 3 and 18 to 4. However, the prediction accuracy was consistent with the model estab-lished from all of the differentially expressed genes, and the average accuracy of all models was 96.3%. Conclusion The prediction model can be simplified with the prediction accuracy unchanged, and thus facilitate the model apply to early diag-nosis and prevention of breast cancer.