电测与仪表
電測與儀錶
전측여의표
ELECTRICAL MEASUREMENT & INSTRUMENTATION
2014年
9期
57-60
,共4页
陈欣%孙翰墨%申烛%孟凯锋%岳捷
陳訢%孫翰墨%申燭%孟凱鋒%嶽捷
진흔%손한묵%신충%맹개봉%악첩
新投产风电场%短期风速预报%物理模型%统计模型%误差
新投產風電場%短期風速預報%物理模型%統計模型%誤差
신투산풍전장%단기풍속예보%물리모형%통계모형%오차
new wind farm%short-term wind speed prediction%physical model%statistical model%error
常规的风电场功率预测建模主要方法是将数值天气预报产生的气象要素输入基于历史scada数据建立统计模型,得到全场预报总功率。但是新投产的风电场没有历史scada数据,而风电场功率预测的准确性主要依赖于短期风速预报的精度。因此,为提高新投产风电场功率预测的准确性,短期风速预报的建立是基于数值气象预报的物理模型和统计模型相结合的方式。首先,通过数值气象模式输出风电场测风塔处轮毂高度层的气象要素;其次,通过建立神经网络模型和多元线性回归两种统计方法对模式输出数据进行修正;最后,对误差的来源进行分类分析。在江苏某风场的测试结果表明,较传统的方式,预测精度有了明显的提高,该方法能够消除数值气象预报的振幅偏差,但相位偏差仍是误差的主要来源。
常規的風電場功率預測建模主要方法是將數值天氣預報產生的氣象要素輸入基于歷史scada數據建立統計模型,得到全場預報總功率。但是新投產的風電場沒有歷史scada數據,而風電場功率預測的準確性主要依賴于短期風速預報的精度。因此,為提高新投產風電場功率預測的準確性,短期風速預報的建立是基于數值氣象預報的物理模型和統計模型相結閤的方式。首先,通過數值氣象模式輸齣風電場測風塔處輪轂高度層的氣象要素;其次,通過建立神經網絡模型和多元線性迴歸兩種統計方法對模式輸齣數據進行脩正;最後,對誤差的來源進行分類分析。在江囌某風場的測試結果錶明,較傳統的方式,預測精度有瞭明顯的提高,該方法能夠消除數值氣象預報的振幅偏差,但相位偏差仍是誤差的主要來源。
상규적풍전장공솔예측건모주요방법시장수치천기예보산생적기상요소수입기우역사scada수거건립통계모형,득도전장예보총공솔。단시신투산적풍전장몰유역사scada수거,이풍전장공솔예측적준학성주요의뢰우단기풍속예보적정도。인차,위제고신투산풍전장공솔예측적준학성,단기풍속예보적건립시기우수치기상예보적물리모형화통계모형상결합적방식。수선,통과수치기상모식수출풍전장측풍탑처륜곡고도층적기상요소;기차,통과건립신경망락모형화다원선성회귀량충통계방법대모식수출수거진행수정;최후,대오차적래원진행분류분석。재강소모풍장적측시결과표명,교전통적방식,예측정도유료명현적제고,해방법능구소제수치기상예보적진폭편차,단상위편차잉시오차적주요래원。
Conventional wind power prediction method primarily uses numerical weather prediction to generate histori-cal scada data and build statistical model, by which the total power prediction is made. As the new wind farm could not collect historical scada data, the accuracy of the wind farm power prediction relies on the accuracy of short-term wind speed prediction. Therefore, to improve the accuracy of wind power prediction for new wind farm, the short-term wind speed prediction is established based on the combination of physical and statistical models of numerical weather prediction. First, the numerical weather model is used to output the meteorological element at turbine hub height lay-ers. Second, the output data are corrected by the establishment of neural network model and multiple linear regression model. Finally, sources of errors are classified and analyzed. Results of wind farm test in Jiangsu province indicate that, compared with traditional methods, this method can significantly improve the accuracy of wind speed prediction and eliminate the amplitude deviation of numerical weather prediction. It is also observed that the phase deviation is still kept as the main error source.