农业环境科学学报
農業環境科學學報
농업배경과학학보
Journal of Agro-Environment Science
2014年
5期
992-998
,共7页
赵越%李泽利%刘茂辉%钱丽萍%孙云%王振%王玉秋
趙越%李澤利%劉茂輝%錢麗萍%孫雲%王振%王玉鞦
조월%리택리%류무휘%전려평%손운%왕진%왕옥추
新安江%茶园红壤%坡度%模拟降雨%氮素%流失特征
新安江%茶園紅壤%坡度%模擬降雨%氮素%流失特徵
신안강%다완홍양%파도%모의강우%담소%류실특정
Xin'anjiang River%red soil in tea garden%slope%simulated rainfall%nitrogen%losses
以新安江流域茶园红壤为研究对象,采用人工模拟降雨方法,研究其在五种不同坡度(0毅、5毅、10毅、15毅、20毅)下的产流和氮素流失的特征。结果显示,径流以壤中流为主,地表径流中的氮素在流失过程中表现出了很强的初期冲刷效应,壤中流的氮素流失量随着降雨的持续而逐渐增大;在各种坡度下,氮素均以壤中流流失为主;地表径流中总氮、硝态氮、氨氮的流失量y与坡度x的回归方程分别为y=1.03e0.06x-0.88(R2=0.99**)、y=0.37e0.06x-0.36(R2=0.98**)、y=0.002x+0.004(R2=0.94**),壤中流中总氮、硝态氮、氨氮的流失量y与坡度x的回归方程分别为y=-5.65e0.06x+30.49(R2=0.91**)、y=-0.17e0.16x+14.92(R2=0.98*)、y=0.77e-0.18x+0.13(R2=0.92*)。随着坡度的增大,地表径流中氮素的流失呈增大趋势,壤中流中氮素的流失呈下降趋势。
以新安江流域茶園紅壤為研究對象,採用人工模擬降雨方法,研究其在五種不同坡度(0毅、5毅、10毅、15毅、20毅)下的產流和氮素流失的特徵。結果顯示,徑流以壤中流為主,地錶徑流中的氮素在流失過程中錶現齣瞭很彊的初期遲刷效應,壤中流的氮素流失量隨著降雨的持續而逐漸增大;在各種坡度下,氮素均以壤中流流失為主;地錶徑流中總氮、硝態氮、氨氮的流失量y與坡度x的迴歸方程分彆為y=1.03e0.06x-0.88(R2=0.99**)、y=0.37e0.06x-0.36(R2=0.98**)、y=0.002x+0.004(R2=0.94**),壤中流中總氮、硝態氮、氨氮的流失量y與坡度x的迴歸方程分彆為y=-5.65e0.06x+30.49(R2=0.91**)、y=-0.17e0.16x+14.92(R2=0.98*)、y=0.77e-0.18x+0.13(R2=0.92*)。隨著坡度的增大,地錶徑流中氮素的流失呈增大趨勢,壤中流中氮素的流失呈下降趨勢。
이신안강류역다완홍양위연구대상,채용인공모의강우방법,연구기재오충불동파도(0의、5의、10의、15의、20의)하적산류화담소류실적특정。결과현시,경류이양중류위주,지표경류중적담소재류실과정중표현출료흔강적초기충쇄효응,양중류적담소류실량수착강우적지속이축점증대;재각충파도하,담소균이양중류류실위주;지표경류중총담、초태담、안담적류실량y여파도x적회귀방정분별위y=1.03e0.06x-0.88(R2=0.99**)、y=0.37e0.06x-0.36(R2=0.98**)、y=0.002x+0.004(R2=0.94**),양중류중총담、초태담、안담적류실량y여파도x적회귀방정분별위y=-5.65e0.06x+30.49(R2=0.91**)、y=-0.17e0.16x+14.92(R2=0.98*)、y=0.77e-0.18x+0.13(R2=0.92*)。수착파도적증대,지표경류중담소적류실정증대추세,양중류중담소적류실정하강추세。
Slope plays important roles in nutrient losses from soils, especially under rainfall. A laboratory simulated rainfall experiment was conducted to investigate the characteristics of runoff and nitrogen losses from red soil in tea garden in Xin’anjiang River Basin under five slope gradients of 0o, 5o, 10o, 15oand 20o. Results showed that runoff occurred mainly as interflow. Nitrogen losses in surface runoff had ini-tial flush effect after each raining event, whereas those in the interflow increased with raining time. Under all slope gradients, nitrogen losses were mainly through interflow. For the surface runoff, regression equation for nitrogen losses(y)and slopes(x)was y=1.03e0.06x-0.88 with R2=0.99**for total nitrogen, y=0.37e0.06x-0.36 with R2=0.98**for NO-3-N, and y=0.002x+0.004 with R2=0.94**for NH+4-N. For the inter-flow, that was y=-5.65e0.06x+30.49 with R2=0.91**for total N, y=-0.17e0.16x+14.92 with R2=0.98*for NO-3-N, and y=0.77e-0.18x+0.13 with R2=0.92*for NH+4-N. These equations indicated that with increasing slopes nitrogen losses increased in the surface runoff, but decreased in the interflow.