农业工程学报
農業工程學報
농업공정학보
2014年
11期
68-75
,共8页
张玉良%肖俊建%崔宝玲%朱祖超
張玉良%肖俊建%崔寶玲%硃祖超
장옥량%초준건%최보령%주조초
离心泵%数值方法%阀门%仿真%调阀%准稳态%瞬态效应
離心泵%數值方法%閥門%倣真%調閥%準穩態%瞬態效應
리심빙%수치방법%벌문%방진%조벌%준은태%순태효응
centrifugal pumps%numerical methods%valves%simulation%regulating valve%quasisteady%transient effect
为研究离心泵在不同工况点快速切换过程中的瞬态特性,该文以一台低比转速离心泵为研究对象,对其工况流量突然减小的瞬态过程,分别采用理论分析和数值计算的方式进行了外特性预测和内流场仿真研究。首先基于叶轮机械广义欧拉方程式,对离心泵模型在流量突然减小瞬态过程中的附加理论扬程进行了定量计算与分析。结果表明,同等条件下,变工况过程结束后的稳定流量越小,附加理论扬程越大,瞬态效应愈发明显;同时该瞬态过程后期的瞬态效应比前期更为明显。动静干涉效应对泵出口流动参数产生显著影响,而对泵进口流动参数的影响并不明显;动静干涉效应对小流量工况时各个流动参数的影响将尤为显著。叶片与隔舌相对位置最近时,计算扬程最小;当隔舌位于叶轮流道中间位置稍后时,计算扬程最大。同一个转动周期(T)内,选取叶片转过隔舌后的0.225 T和0.825 T位置进行单次定常计算可取得较高精度的数值预测结果。动静过流部件和粘性效应使得叶轮和蜗壳内的轴向速度分布规律完全相反。瞬态过程中流体加速效应使得瞬态流场演化整体上滞后于准稳态流场。
為研究離心泵在不同工況點快速切換過程中的瞬態特性,該文以一檯低比轉速離心泵為研究對象,對其工況流量突然減小的瞬態過程,分彆採用理論分析和數值計算的方式進行瞭外特性預測和內流場倣真研究。首先基于葉輪機械廣義歐拉方程式,對離心泵模型在流量突然減小瞬態過程中的附加理論颺程進行瞭定量計算與分析。結果錶明,同等條件下,變工況過程結束後的穩定流量越小,附加理論颺程越大,瞬態效應愈髮明顯;同時該瞬態過程後期的瞬態效應比前期更為明顯。動靜榦涉效應對泵齣口流動參數產生顯著影響,而對泵進口流動參數的影響併不明顯;動靜榦涉效應對小流量工況時各箇流動參數的影響將尤為顯著。葉片與隔舌相對位置最近時,計算颺程最小;噹隔舌位于葉輪流道中間位置稍後時,計算颺程最大。同一箇轉動週期(T)內,選取葉片轉過隔舌後的0.225 T和0.825 T位置進行單次定常計算可取得較高精度的數值預測結果。動靜過流部件和粘性效應使得葉輪和蝸殼內的軸嚮速度分佈規律完全相反。瞬態過程中流體加速效應使得瞬態流場縯化整體上滯後于準穩態流場。
위연구리심빙재불동공황점쾌속절환과정중적순태특성,해문이일태저비전속리심빙위연구대상,대기공황류량돌연감소적순태과정,분별채용이론분석화수치계산적방식진행료외특성예측화내류장방진연구。수선기우협륜궤계엄의구랍방정식,대리심빙모형재류량돌연감소순태과정중적부가이론양정진행료정량계산여분석。결과표명,동등조건하,변공황과정결속후적은정류량월소,부가이론양정월대,순태효응유발명현;동시해순태과정후기적순태효응비전기경위명현。동정간섭효응대빙출구류동삼수산생현저영향,이대빙진구류동삼수적영향병불명현;동정간섭효응대소류량공황시각개류동삼수적영향장우위현저。협편여격설상대위치최근시,계산양정최소;당격설위우협륜류도중간위치초후시,계산양정최대。동일개전동주기(T)내,선취협편전과격설후적0.225 T화0.825 T위치진행단차정상계산가취득교고정도적수치예측결과。동정과류부건화점성효응사득협륜화와각내적축향속도분포규률완전상반。순태과정중류체가속효응사득순태류장연화정체상체후우준은태류장。
Transient performance of pumps during transient operating periods, such as startup and the regulating valve, has drawn more and more attention recently due to growing engineering needs. It is impossible for a pump to work at a working point forever, namely that the switching process among different working points must be existent. In order to reveal the transient characteristics of a prototype centrifugal pump in the transient process of the decreasing flow rate by the regulating discharge valve, a low specific-speed centrifugal pump was chosen as the research object to investigate by using the theoretical analysis and numerical simulation, respectively. Through the research, the external performance and internal flow field of the pump model are obtained during the transient operating period. Based on the deduced generalized Euler equation of turbomachinery, the additional transient theory head of the pump model are quantitatively calculated and analyzed in the process of decreasing the flow rate. Results show that under the same conditions, the flow rate after the regulating discharge valve is smaller, the greater the additional theory head, which manifests the transient effect that is more obvious. Meanwhile, the transient effect at the later stage is more remarkable than that of former stage. Subsequently, the RNGk- turbulence model, sliding mesh, and user defined functions (UDF) are employed to simulate the three-dimensional unsteady viscous incompressible flow in the centrifugal pump during the rapid regulating flow rate. The results show that the rotor-stator interaction plays a dominant role in the fluctuating characteristics of flow parameters at the pump outlet, while the influence on flow parameters at the pump inlet is not very obvious. Moreover, compared with the influence on the condition of the large flow rate, the rotor-stator interaction has a more remarkable effect on the condition of the small flow rate. The predicted pump head is smallest when the relative position between blade and tongue is nearest. Similarly, the predicted head is largest when the tongue is at just after the middle of impeller channel. In a rotational cycle, choosing two relative positions, namely 0.225 T and 0.825 T as the single steady initial phase, would obtain the best numerical prediction accuracy. The different flow components and viscous effect together make the characteristics of the axial velocity distribution in the impeller and the volute opposite. The flow acceleration effect is the most important reason that the flow field evolution in transient calculation lags behind that of the quasisteady calculation as a whole.