国土资源遥感
國土資源遙感
국토자원요감
REMOTE SENSING FOR LAND & RESOURCES
2014年
2期
93-98
,共6页
Hausdorff距离%图像配准%遗传算法( GA)%尺度不变特征转换( SIFT)
Hausdorff距離%圖像配準%遺傳算法( GA)%呎度不變特徵轉換( SIFT)
Hausdorff거리%도상배준%유전산법( GA)%척도불변특정전환( SIFT)
Hausdorff distance%image registration%genetic algorithm ( GA )%scale -invariant feature transform ( SIFT)
针对多尺度遥感图像灰度差异大的特点,利用特征集形状进行配准,提出了一种改进的Hausdorff距离及相应的图像匹配算法。首先采用基于尺度不变特征转换( scale-invariant feature transform,SIFT)的特征提取方法,提取多尺度图像间的尺度不变特征;然后利用Hausdorff距离作为适应度函数,通过遗传算法( genetic algorithm,GA)寻求图像间的几何变换参数;最后将待配准图像经过几何变换以及重采样与参考图像匹配,实现多尺度遥感图像的配准。实验结果表明,改进的Hausdorff距离算法与传统的Hausdorff相比,具有较高的配准精度和较快的配准速度,且稳定性和抗噪性更高,更适合用于图像配准。
針對多呎度遙感圖像灰度差異大的特點,利用特徵集形狀進行配準,提齣瞭一種改進的Hausdorff距離及相應的圖像匹配算法。首先採用基于呎度不變特徵轉換( scale-invariant feature transform,SIFT)的特徵提取方法,提取多呎度圖像間的呎度不變特徵;然後利用Hausdorff距離作為適應度函數,通過遺傳算法( genetic algorithm,GA)尋求圖像間的幾何變換參數;最後將待配準圖像經過幾何變換以及重採樣與參攷圖像匹配,實現多呎度遙感圖像的配準。實驗結果錶明,改進的Hausdorff距離算法與傳統的Hausdorff相比,具有較高的配準精度和較快的配準速度,且穩定性和抗譟性更高,更適閤用于圖像配準。
침대다척도요감도상회도차이대적특점,이용특정집형상진행배준,제출료일충개진적Hausdorff거리급상응적도상필배산법。수선채용기우척도불변특정전환( scale-invariant feature transform,SIFT)적특정제취방법,제취다척도도상간적척도불변특정;연후이용Hausdorff거리작위괄응도함수,통과유전산법( genetic algorithm,GA)심구도상간적궤하변환삼수;최후장대배준도상경과궤하변환이급중채양여삼고도상필배,실현다척도요감도상적배준。실험결과표명,개진적Hausdorff거리산법여전통적Hausdorff상비,구유교고적배준정도화교쾌적배준속도,차은정성화항조성경고,경괄합용우도상배준。
In consideration of the features of remarkable difference in the gray-scale of the remote sensing image with multi-scales, this paper presents an image registration method with improved Hausdorff distance based on scale-invariant to solve the registration of multi -source remote sensing images. According to the method, the scale-invariant features of multi-scale images were firstly extracted by using the feature extraction method based on scale-invariant feature transform ( SIFT ) , and then the Hausdorff distance was used as the fitness function to seek for geometric image transformation parameters with the help of genetic algorithm( GA) . At last,the image to be registered was re -sampled by using the transformation parameters and matched with the references image. The experimental results show that, compared with the traditional method of Hausdorff distance, the new method has higher registration accuracy and stability, and is more suitable for image registration.