计算物理
計算物理
계산물리
CHINESE JOURNAL OF COMPUTATIONAL PHYSICS
2014年
3期
331-334
,共4页
杨伟%薛思瀚%刘秦见%张树光
楊偉%薛思瀚%劉秦見%張樹光
양위%설사한%류진견%장수광
沉降分布孔隙率%Darcy模型%多孔介质%“O”型理论
沉降分佈孔隙率%Darcy模型%多孔介質%“O”型理論
침강분포공극솔%Darcy모형%다공개질%“O”형이론
settlement distributed porosity%Darcy model%porous media%“O-shape” ring theory
研究沉降分布孔隙率多孔介质流动和传热,根据“O”形圈理论和现场测定确定孔隙率系数,建立坐标方向孔隙率分布函数;考虑流体密度变化,并引入Brinkman?Forchheimer的扩展Darcy模型,能量方程采用界面连续条件,建立沉降分布孔隙率多孔介质流动和传热求解模型。采用差分法对模型进行离散化,应用高斯–赛德尔方法迭代求解。数值分析表明:沉降分布孔隙率条件下多孔介质内流体流动速度在壁面附近较大,中心部位较小,壁面附近孔隙率的增大使得低流速区域减小,较高流速区域增大;当孔隙率小值时,温度按线性减小;当孔隙率大值时,温度在高低温壁面附近迅速减小,在中部减小较缓,热量按导热和对流共同传递;孔隙率增大能使平均怒谢尔数增大,对流换热作用增强。
研究沉降分佈孔隙率多孔介質流動和傳熱,根據“O”形圈理論和現場測定確定孔隙率繫數,建立坐標方嚮孔隙率分佈函數;攷慮流體密度變化,併引入Brinkman?Forchheimer的擴展Darcy模型,能量方程採用界麵連續條件,建立沉降分佈孔隙率多孔介質流動和傳熱求解模型。採用差分法對模型進行離散化,應用高斯–賽德爾方法迭代求解。數值分析錶明:沉降分佈孔隙率條件下多孔介質內流體流動速度在壁麵附近較大,中心部位較小,壁麵附近孔隙率的增大使得低流速區域減小,較高流速區域增大;噹孔隙率小值時,溫度按線性減小;噹孔隙率大值時,溫度在高低溫壁麵附近迅速減小,在中部減小較緩,熱量按導熱和對流共同傳遞;孔隙率增大能使平均怒謝爾數增大,對流換熱作用增彊。
연구침강분포공극솔다공개질류동화전열,근거“O”형권이론화현장측정학정공극솔계수,건립좌표방향공극솔분포함수;고필류체밀도변화,병인입Brinkman?Forchheimer적확전Darcy모형,능량방정채용계면련속조건,건립침강분포공극솔다공개질류동화전열구해모형。채용차분법대모형진행리산화,응용고사–새덕이방법질대구해。수치분석표명:침강분포공극솔조건하다공개질내류체류동속도재벽면부근교대,중심부위교소,벽면부근공극솔적증대사득저류속구역감소,교고류속구역증대;당공극솔소치시,온도안선성감소;당공극솔대치시,온도재고저온벽면부근신속감소,재중부감소교완,열량안도열화대류공동전체;공극솔증대능사평균노사이수증대,대류환열작용증강。
Flow and heat transfer in porous media with settlement distributed porosity is studied. Based on‘O?shape’ ring theory and in situ measurement, a distribution function of porosity in x direction is established. Considering change of fluid density, Brinkman?Forchheimer?extended Darcy model is introduced. Energy equation is solved with continuity boundary conditions. A model of flow and heat transfer in porous media with settlement distributed porosity is established. The model is discretized with difference method. Gauss?Seidel iteration method is used. Numerical analysis shows that:Fluid flow velocity in porous media with of settlement distributed porosity is greater near wall surface, and it is small at center. Increase of porosity near wall surface reduces low velocity zone and increases high velocity zone. As porosity is small, temperature decreases linearly. As porosity is large, temperature near high and low temperature wall surface reduces rapidly. The decrease becomes slower at center. Heat is transferred through conduction and convection together. Increase of porosity increases average Nusselt number and enhances heat convection.