电力系统保护与控制
電力繫統保護與控製
전력계통보호여공제
POWER SYSTM PROTECTION AND CONTROL
2014年
10期
29-34
,共6页
张翌晖%王贺%胡志坚%王凯%黄东山%宁文辉%张承学
張翌暉%王賀%鬍誌堅%王凱%黃東山%寧文輝%張承學
장익휘%왕하%호지견%왕개%황동산%저문휘%장승학
风速%预测%改进极限学习机%集合经验模态分解%相空间重构
風速%預測%改進極限學習機%集閤經驗模態分解%相空間重構
풍속%예측%개진겁한학습궤%집합경험모태분해%상공간중구
wind speed%forecasting%improved extreme learning machine%ensemble empirical mode decomposition%phase space reconstruction
提出一种基于集合经验模态分解(Ensemble empirical mode decomposition)和改进极限学习机(Improved Extreme Learning Machine,IELM)的新型短期风速组合预测模型。采用集合经验模态分解将风速序列分解成不同频段的分量,以降低序列的非平稳性。使用改进极限学习机对各分量分别建模预测,为避免极限学习机输入维数选取的随意性和分量信息丢失等问题,先对各分量重构相空间,最后将各分量预测结果叠加得到最终预测结果。实例研究表明,所提的组合预测模型具有较高的预测精度。
提齣一種基于集閤經驗模態分解(Ensemble empirical mode decomposition)和改進極限學習機(Improved Extreme Learning Machine,IELM)的新型短期風速組閤預測模型。採用集閤經驗模態分解將風速序列分解成不同頻段的分量,以降低序列的非平穩性。使用改進極限學習機對各分量分彆建模預測,為避免極限學習機輸入維數選取的隨意性和分量信息丟失等問題,先對各分量重構相空間,最後將各分量預測結果疊加得到最終預測結果。實例研究錶明,所提的組閤預測模型具有較高的預測精度。
제출일충기우집합경험모태분해(Ensemble empirical mode decomposition)화개진겁한학습궤(Improved Extreme Learning Machine,IELM)적신형단기풍속조합예측모형。채용집합경험모태분해장풍속서렬분해성불동빈단적분량,이강저서렬적비평은성。사용개진겁한학습궤대각분량분별건모예측,위피면겁한학습궤수입유수선취적수의성화분량신식주실등문제,선대각분량중구상공간,최후장각분량예측결과첩가득도최종예측결과。실례연구표명,소제적조합예측모형구유교고적예측정도。
This paper proposes a new short-term combination prediction model of wind speed by means of ensemble empirical mode decomposition (EEMD) and improved extreme learning machine (IELM). Firstly, wind speed series is decomposed into several components with different frequency bands by EEMD to reduce the series non-stationary. Secondly, the phase space of each component is reconstructed in order to solve the randomness and component information lost of input dimensionality selection of extreme learning machine, and then an IELM model of each component is established. Finally, the forecast result of each component is superimposed to get the final result. The simulation result verifies that the hybrid model has higher prediction accuracy of wind speed.