中国海洋大学学报(英文版)
中國海洋大學學報(英文版)
중국해양대학학보(영문판)
JOURNAL OF OCEAN UNIVERSITY OF CHINA
2014年
1期
163-168
,共6页
Klebsiella%bacteriophage%exopolysaccharide%depolymerase%enzymatic hydrolysis
The bacteriophage P13 that infects Klebsiella serotype K13 contains a heat-stable depolymerase capable of effective degradation of exopolysaccharide (EPS) produced by this microorganism. In this study, the titer of phage P13, initially 2.0 × 107 pfu mL-1, was found increasing 20 min after infection and reached 5.0 × 109 pfu mL-1 in 60 min. Accordingly, the enzyme activity of de-polymerase approached the maximum 60 min after infection. Treatment at 70℃for 30 min inactivated all the phage, but retained over 90%of the depolymerase activity. Addition of acetone into the crude phage lysate led to precipitation of the protein, with a marked increase in bacterial EPS degradation activity and a rapid drop in the titer of phage. After partial purification by acetone precipitation and ultrafiltration centrifugation, the enzyme was separated from the phage particles, showing two components with enzyme activity on Q-Sepharose Fast Flow. The soluble enzyme had an optimum degradation activity at 60℃and pH 6.5. Transmission electron mi-croscopy demonstrated that the phage P13 particles were spherical with a diameter of 50 nm and a short stumpy tail. It was a dou-ble-strand DNA virus consisting of a nucleic acid molecule of 45976 bp. This work provides an efficient purification operation in-cluding thermal treatment and ultrafiltration centrifugation, to dissociate depolymerase from phage particles. The characterization of phage P13 and associated EPS depolymerase is beneficial for further application of this enzyme.