中国有色金属学报
中國有色金屬學報
중국유색금속학보
THE CHINESE JOURNAL OF NONFERROUS METALS
2014年
5期
1251-1258
,共8页
李超%张晓泳%李志友%周科朝
李超%張曉泳%李誌友%週科朝
리초%장효영%리지우%주과조
Ti-55511合金%超细晶%热处理%显微组织%力学性能
Ti-55511閤金%超細晶%熱處理%顯微組織%力學性能
Ti-55511합금%초세정%열처리%현미조직%역학성능
Ti-55511 alloy%ultra-fine grain%heat treatment%microstructure%mechanical property
采用热轧制备晶粒尺寸为0.1~0.5μm的超细晶Ti-55511近β钛合金,利用SEM和TEM等研究热处理工艺对超细晶合金显微组织和力学性能的影响。结果表明,在350~650℃的温度条件下,合金强度和硬度随温度的升高呈现先增高后降低的趋势,在450℃时达到峰值强度1486.09 MPa;在450℃退火时,随着退火时间的延长,合金强度首先急剧上升至1536 MPa后趋于稳定,伸长率呈现先增加后下降的趋势;合金在退火过程中主要经历动态回复过程,未发生明显的粗化长大现象,晶粒尺寸均小于1μm。动态回复过程在消除加工硬化的同时促进了晶界/相界的稳定化,增强细晶强化作用;退火过程中发生α→α2和β→ω→α相变过程,第二相粒子弥散强化效应增强。但是当第二相粒子尺寸增大至一定程度时,会显著降低合金的塑性。退火过程中合金力学性能的变化与强化机制的作用有关。
採用熱軋製備晶粒呎吋為0.1~0.5μm的超細晶Ti-55511近β鈦閤金,利用SEM和TEM等研究熱處理工藝對超細晶閤金顯微組織和力學性能的影響。結果錶明,在350~650℃的溫度條件下,閤金彊度和硬度隨溫度的升高呈現先增高後降低的趨勢,在450℃時達到峰值彊度1486.09 MPa;在450℃退火時,隨著退火時間的延長,閤金彊度首先急劇上升至1536 MPa後趨于穩定,伸長率呈現先增加後下降的趨勢;閤金在退火過程中主要經歷動態迴複過程,未髮生明顯的粗化長大現象,晶粒呎吋均小于1μm。動態迴複過程在消除加工硬化的同時促進瞭晶界/相界的穩定化,增彊細晶彊化作用;退火過程中髮生α→α2和β→ω→α相變過程,第二相粒子瀰散彊化效應增彊。但是噹第二相粒子呎吋增大至一定程度時,會顯著降低閤金的塑性。退火過程中閤金力學性能的變化與彊化機製的作用有關。
채용열알제비정립척촌위0.1~0.5μm적초세정Ti-55511근β태합금,이용SEM화TEM등연구열처리공예대초세정합금현미조직화역학성능적영향。결과표명,재350~650℃적온도조건하,합금강도화경도수온도적승고정현선증고후강저적추세,재450℃시체도봉치강도1486.09 MPa;재450℃퇴화시,수착퇴화시간적연장,합금강도수선급극상승지1536 MPa후추우은정,신장솔정현선증가후하강적추세;합금재퇴화과정중주요경력동태회복과정,미발생명현적조화장대현상,정립척촌균소우1μm。동태회복과정재소제가공경화적동시촉진료정계/상계적은정화,증강세정강화작용;퇴화과정중발생α→α2화β→ω→α상변과정,제이상입자미산강화효응증강。단시당제이상입자척촌증대지일정정도시,회현저강저합금적소성。퇴화과정중합금역학성능적변화여강화궤제적작용유관。
The ultra-fine grained (UFG) Ti-55511 nearβtitanium alloy with grain size of 0.1-0.5μm was prepared by hot rolling. The effects of heat treatment on the microstructure and mechanical properties were investigated by SEM and TEM. The results indicate that both the strength and hardness of the alloy increase firstly and then reduce with increasing the heat treatment temperature from 350℃to 650℃. The peak strength of 1486.09 MPa appears at 450℃. The strength dramatically reaches 1536 MPa and then becomes stable with prolonging the holding time when heat-treated at 450℃. While the maximum elongation increases firstly and then decreases. During the annealing process the dynamic recovery occurs in the alloy and the grain size remains smaller than 1μm. The dynamic recovery stimulates the grain refinement effect by eliminating the hardening process and improves the stability of the grain boundary/phase boundary. The phase transitions of α→α2 and β→ω→α enhance the second phase particle dispersion effect during the annealing process. However, the ductility of alloy significantly decreases when the second phase particles grow up to a certain size. The mechanical property evolution during annealing process is mainly related to the effect of strengthening mechanisms.