中国有色金属学报
中國有色金屬學報
중국유색금속학보
THE CHINESE JOURNAL OF NONFERROUS METALS
2014年
5期
1232-1240
,共9页
田宁%田素贵%于慧臣%孟宪林
田寧%田素貴%于慧臣%孟憲林
전저%전소귀%우혜신%맹헌림
DZ125镍基合金%显微组织%蠕变%变形特征%蠕变损伤
DZ125鎳基閤金%顯微組織%蠕變%變形特徵%蠕變損傷
DZ125얼기합금%현미조직%연변%변형특정%연변손상
DZ125 nickel-based superalloy%microstructure%creep%deformation feature%creep damage
通过蠕变性能测试及组织形貌观察,研究DZ125合金的高温蠕变行为。结果表明:经完全热处理后,合金在枝晶干/间区域存在明显的组织不均匀性,粗大γ′相存在于枝晶间,细小γ′相存在于枝晶干。蠕变初期合金中γ′相已转变成筏状结构,稳态蠕变期间合金的变形机制是位错攀移越过γ′相,其中,位错攀移期间,易形成位错的割阶,空位的形成和扩散是位错攀移的控制环节。而蠕变后期合金的变形机制是位错在基体中滑移和剪切进入筏状γ′相。在高温蠕变后期,合金中裂纹首先在晶界处萌生与扩展,且不同形态晶界具有不同的损伤特征,其中,沿应力轴成45°角晶界承受蠕变损伤的较大剪切应力可使其发生较大几率的蠕变损伤;而加入的元素Hf促进细小粒状相沿晶界的析出,可抑制晶界滑移,提高晶界强度,是合金蠕变断裂后晶界呈现非光滑表面的主要原因。
通過蠕變性能測試及組織形貌觀察,研究DZ125閤金的高溫蠕變行為。結果錶明:經完全熱處理後,閤金在枝晶榦/間區域存在明顯的組織不均勻性,粗大γ′相存在于枝晶間,細小γ′相存在于枝晶榦。蠕變初期閤金中γ′相已轉變成筏狀結構,穩態蠕變期間閤金的變形機製是位錯攀移越過γ′相,其中,位錯攀移期間,易形成位錯的割階,空位的形成和擴散是位錯攀移的控製環節。而蠕變後期閤金的變形機製是位錯在基體中滑移和剪切進入筏狀γ′相。在高溫蠕變後期,閤金中裂紋首先在晶界處萌生與擴展,且不同形態晶界具有不同的損傷特徵,其中,沿應力軸成45°角晶界承受蠕變損傷的較大剪切應力可使其髮生較大幾率的蠕變損傷;而加入的元素Hf促進細小粒狀相沿晶界的析齣,可抑製晶界滑移,提高晶界彊度,是閤金蠕變斷裂後晶界呈現非光滑錶麵的主要原因。
통과연변성능측시급조직형모관찰,연구DZ125합금적고온연변행위。결과표명:경완전열처리후,합금재지정간/간구역존재명현적조직불균균성,조대γ′상존재우지정간,세소γ′상존재우지정간。연변초기합금중γ′상이전변성벌상결구,은태연변기간합금적변형궤제시위착반이월과γ′상,기중,위착반이기간,역형성위착적할계,공위적형성화확산시위착반이적공제배절。이연변후기합금적변형궤제시위착재기체중활이화전절진입벌상γ′상。재고온연변후기,합금중렬문수선재정계처맹생여확전,차불동형태정계구유불동적손상특정,기중,연응력축성45°각정계승수연변손상적교대전절응력가사기발생교대궤솔적연변손상;이가입적원소Hf촉진세소립상상연정계적석출,가억제정계활이,제고정계강도,시합금연변단렬후정계정현비광활표면적주요원인。
By means of creep-property measurement and microstructure observation, the creep behavior of DZ125 superalloy at high temperatures was investigated. The results show that after full heat treatment, the unhomogeneous microstructure still appears in the dendritic/interdendritic regions of the alloy. Fine cuboidalγ′precipitates locate in the dendrite arm regions, while coarse ones locate in the interdendritic regions. The cuboidalγ′phase in the alloy transforms into the rafted structure along the direction vertical to the stress axis in the primary stage of creep. Dislocation climbing over the raftedγ′phase is thought to be the deformation mechanism of the alloy during the steady creep stage. Thereinto, during the dislocation climbing, dislocation jogs are easy to form, and the formation and diffusion of vacancies are the controlling factors of dislocation climbing. In the latter stage of creep, the deformation mechanism of the alloy is dislocation sliding inγmatrix channels and shearing into theγ′phase, and the microcracks firstly initiate and propagate along the grain boundaries. The grain boundaries with different configurations display various damage characters during creep. Thereinto, bigger shearing stress during creep damage of the alloy is applied on the boundaries at 45° angle relative to the stress axis, which increases the creep damage probability of them. However, the addition of the element Hf can promote the precipitation of the fine particle-like phase along the boundaries, which can inhibit the slipping of the grain boundaries to improve the strength of them. This is the main reason why the boundaries have non-smooth surfaces after creep rupture of the alloy.