电工电能新技术
電工電能新技術
전공전능신기술
ADVANCED TECHNOLOGY OF ELECTRICAL ENGINEERING AND ENERGY
2014年
5期
63-68
,共6页
铅酸电池%粒子群优化%繁殖机制%参数辨识
鉛痠電池%粒子群優化%繁殖機製%參數辨識
연산전지%입자군우화%번식궤제%삼수변식
lead-acid battery%particle swarm optimization (PSO)%breeding mechanism%parameter identification
针对铅酸蓄电池在工作中呈现非线性特性,电池模型等效参数随其荷电状态( SOC )改变而发生变化以致难以准确估计的问题,本文结合常见的等效电池模型,应用一种带有繁殖机制的粒子群优化( PSO)算法对蓄电池模型参数进行了辨识。本研究采用基于特定分析方程的参数描述形式,在不同SOC状态下对等效模型进行了参数优化。测试结果表明,采用这种带有繁殖机制的PSO算法所估计出的蓄电池模型能够较准确地跟踪电池的实际工作电压,从而验证了该算法在蓄电池模型辨识中的实用价值,为建立准确的蓄电池模型提供了一个系统化、理论化的方法。
針對鉛痠蓄電池在工作中呈現非線性特性,電池模型等效參數隨其荷電狀態( SOC )改變而髮生變化以緻難以準確估計的問題,本文結閤常見的等效電池模型,應用一種帶有繁殖機製的粒子群優化( PSO)算法對蓄電池模型參數進行瞭辨識。本研究採用基于特定分析方程的參數描述形式,在不同SOC狀態下對等效模型進行瞭參數優化。測試結果錶明,採用這種帶有繁殖機製的PSO算法所估計齣的蓄電池模型能夠較準確地跟蹤電池的實際工作電壓,從而驗證瞭該算法在蓄電池模型辨識中的實用價值,為建立準確的蓄電池模型提供瞭一箇繫統化、理論化的方法。
침대연산축전지재공작중정현비선성특성,전지모형등효삼수수기하전상태( SOC )개변이발생변화이치난이준학고계적문제,본문결합상견적등효전지모형,응용일충대유번식궤제적입자군우화( PSO)산법대축전지모형삼수진행료변식。본연구채용기우특정분석방정적삼수묘술형식,재불동SOC상태하대등효모형진행료삼수우화。측시결과표명,채용저충대유번식궤제적PSO산법소고계출적축전지모형능구교준학지근종전지적실제공작전압,종이험증료해산법재축전지모형변식중적실용개치,위건립준학적축전지모형제공료일개계통화、이론화적방법。
In practical applications, battery usually works in a nonlinear state and its equivalent model parameters change with battery state of charge ( SOC) . In order to correctly estimate the model parameter of valve regulated lead?acid battery, a particle swarm optimization ( PSO) with evolutionary mechanism is employed based on a com?monly used battery model. In this paper a specific empirical function is adopted to describe the parameter?SOC re?lation, and the parameters under different SOC states are identified. Identification results are compared and it is shown that with this hybrid PSO algorithm, the identified battery model can track the practical working performance reasonably well, so a strong practicability of this algorithm is verified, and a systematic method for battery parame?ter identification is established.