电镀与涂饰
電鍍與塗飾
전도여도식
ELECTROPLATING & FINISHING
2014年
8期
330-334
,共5页
李岩%李丝芮%冯龙龙%陈玲玲%顾艳红
李巖%李絲芮%馮龍龍%陳玲玲%顧豔紅
리암%리사예%풍룡룡%진령령%고염홍
镁合金%微弧氧化%腐蚀速率%数学模型%主成分分析%特征向量
鎂閤金%微弧氧化%腐蝕速率%數學模型%主成分分析%特徵嚮量
미합금%미호양화%부식속솔%수학모형%주성분분석%특정향량
magnesium alloy%micro-arc oxidation%corrosion rate%mathematical model%principal component analysis%eigenvector
为了研究AZ31镁合金微弧氧化(MAO)涂层腐蚀速率的数学模型,选取不同的过程参数(包括脉冲频率、电压、氧化时间和电解液浓度),采用微弧氧化技术和磷酸三钠电解液体系,在镁合金基体上制备了耐蚀涂层。研究了不同脉冲频率下制备的MAO涂层在仿生体液中浸泡1、5和7 d后的极化曲线,测试了不同条件下制备的镁合金 MAO 涂层在浸泡不同时间后的腐蚀电流密度,对不同微弧氧化过程参数及浸泡时间进行了主成分分析,建立了腐蚀速率的数学模型。结果表明,MAO涂层的腐蚀电流密度小于镁合金基体,脉冲频率对腐蚀速率起主导作用。将不同过程参数下制备的镁合金 MAO 涂层在仿生体液中浸泡24 h,利用Tafel曲线拟合得到的腐蚀电流密度与由回归方程计算所得的模拟电流密度相比,相对误差小于5%,而且其多元评定系数为0.9021,表明所建立的回归方程能可靠地用来模拟不同参数下制备的镁合金 MAO 涂层在浸泡不同时间下的腐蚀电流密度,为预测和控制镁及镁合金 MAO 涂层的腐蚀速率提供指导。
為瞭研究AZ31鎂閤金微弧氧化(MAO)塗層腐蝕速率的數學模型,選取不同的過程參數(包括脈遲頻率、電壓、氧化時間和電解液濃度),採用微弧氧化技術和燐痠三鈉電解液體繫,在鎂閤金基體上製備瞭耐蝕塗層。研究瞭不同脈遲頻率下製備的MAO塗層在倣生體液中浸泡1、5和7 d後的極化麯線,測試瞭不同條件下製備的鎂閤金 MAO 塗層在浸泡不同時間後的腐蝕電流密度,對不同微弧氧化過程參數及浸泡時間進行瞭主成分分析,建立瞭腐蝕速率的數學模型。結果錶明,MAO塗層的腐蝕電流密度小于鎂閤金基體,脈遲頻率對腐蝕速率起主導作用。將不同過程參數下製備的鎂閤金 MAO 塗層在倣生體液中浸泡24 h,利用Tafel麯線擬閤得到的腐蝕電流密度與由迴歸方程計算所得的模擬電流密度相比,相對誤差小于5%,而且其多元評定繫數為0.9021,錶明所建立的迴歸方程能可靠地用來模擬不同參數下製備的鎂閤金 MAO 塗層在浸泡不同時間下的腐蝕電流密度,為預測和控製鎂及鎂閤金 MAO 塗層的腐蝕速率提供指導。
위료연구AZ31미합금미호양화(MAO)도층부식속솔적수학모형,선취불동적과정삼수(포괄맥충빈솔、전압、양화시간화전해액농도),채용미호양화기술화린산삼납전해액체계,재미합금기체상제비료내식도층。연구료불동맥충빈솔하제비적MAO도층재방생체액중침포1、5화7 d후적겁화곡선,측시료불동조건하제비적미합금 MAO 도층재침포불동시간후적부식전류밀도,대불동미호양화과정삼수급침포시간진행료주성분분석,건립료부식속솔적수학모형。결과표명,MAO도층적부식전류밀도소우미합금기체,맥충빈솔대부식속솔기주도작용。장불동과정삼수하제비적미합금 MAO 도층재방생체액중침포24 h,이용Tafel곡선의합득도적부식전류밀도여유회귀방정계산소득적모의전류밀도상비,상대오차소우5%,이차기다원평정계수위0.9021,표명소건립적회귀방정능가고지용래모의불동삼수하제비적미합금 MAO 도층재침포불동시간하적부식전류밀도,위예측화공제미급미합금 MAO 도층적부식속솔제공지도。
The mathematical model for corrosion rate of a micro-arc oxidation (MAO) coating on AZ31 magnesium was studied. The corrosion resistant coating on AZ31 Mg alloys was prepared from a Na3PO4 bath by MAO technology using various parameters including pulse frequency, voltage, oxidation time, and electrolyte concentration. The polarization curves for MAO coatings prepared at different pulse frequencies after immersion in simulated body fluid (SBF) for 1, 5, and 7 days were examined. The corrosion current densities of the MAO coatings prepared under different conditions after immersing for different time were measured. The principal component analysis for various parameters of MAO process and immersion time in SBF was carried out. A mathematical model for corrosion rate was established. The results showed that the corrosion current density of MAO coating is smaller than that of untreated Mg alloy substrate. Pulse frequency plays a leading role for corrosion rate. The relative error of the corrosion current density fitted by Tafel curves for the MAO coatings prepared under different process parameters after immersion in SBF for 24 h is less than 5%, as compared with the corrosion current densities calculated by using the regression equation. The coefficient of multiple determination is 0.902 1, implying that the regression equation can be reliably used for predicting the corrosion current densities of MAO coatings prepared on magnesium alloy under various parameters and immersed in SBF for different time. The method can be used for predicting and controlling the corrosion rates of MAO coatings on Mg and Mg alloys.