昆明理工大学学报(自然科学版)
昆明理工大學學報(自然科學版)
곤명리공대학학보(자연과학판)
JOURNAL OF KUNMING UNIVERSITY OF SCIENCE AND TECHNOLOGY(SCIENCE AND TECHNOLOGY)
2014年
3期
66-72
,共7页
孟华%王建军%王华%范国锋%李红娟
孟華%王建軍%王華%範國鋒%李紅娟
맹화%왕건군%왕화%범국봉%리홍연
趋势预测%ARMA模型%ARCH效应%概率分布
趨勢預測%ARMA模型%ARCH效應%概率分佈
추세예측%ARMA모형%ARCH효응%개솔분포
trend forecast%ARMA model%ARCH effect%probability distribution
为了掌握钢铁企业自备电厂煤气供入量的变化趋势,基于采样数据建立了自回归移动平均(ARMA)模型,利用拉格朗日乘数法(LM)检验出 ARMA 模型残差存在自回归条件异方差(ARCH)效应,建立ARMA-ARCH模型.分别使用ARMA模型和ARMA-ARCH模型进行短期预测,并比较两者的精度.最后基于概率分布对扰动项进行统计分析,得到生产中稳定性差是导致扰动项大的主要原因,与实际生产相吻合.研究表明,ARMA-ARCH模型的预测精度较高,预测误差为4.11%,能够较为准确地预测出钢铁企业自备电厂煤气供入量变化趋势,对实际生产中频繁调节锅炉开关和优化调度决策有着重要的作用.
為瞭掌握鋼鐵企業自備電廠煤氣供入量的變化趨勢,基于採樣數據建立瞭自迴歸移動平均(ARMA)模型,利用拉格朗日乘數法(LM)檢驗齣 ARMA 模型殘差存在自迴歸條件異方差(ARCH)效應,建立ARMA-ARCH模型.分彆使用ARMA模型和ARMA-ARCH模型進行短期預測,併比較兩者的精度.最後基于概率分佈對擾動項進行統計分析,得到生產中穩定性差是導緻擾動項大的主要原因,與實際生產相吻閤.研究錶明,ARMA-ARCH模型的預測精度較高,預測誤差為4.11%,能夠較為準確地預測齣鋼鐵企業自備電廠煤氣供入量變化趨勢,對實際生產中頻繁調節鍋爐開關和優化調度決策有著重要的作用.
위료장악강철기업자비전엄매기공입량적변화추세,기우채양수거건립료자회귀이동평균(ARMA)모형,이용랍격랑일승수법(LM)검험출 ARMA 모형잔차존재자회귀조건이방차(ARCH)효응,건립ARMA-ARCH모형.분별사용ARMA모형화ARMA-ARCH모형진행단기예측,병비교량자적정도.최후기우개솔분포대우동항진행통계분석,득도생산중은정성차시도치우동항대적주요원인,여실제생산상문합.연구표명,ARMA-ARCH모형적예측정도교고,예측오차위4.11%,능구교위준학지예측출강철기업자비전엄매기공입량변화추세,대실제생산중빈번조절과로개관화우화조도결책유착중요적작용.
Varying tendency forecasting is very important to the residual gas supply of self-provided power plant in iron and steel industry.By applying the Eviews software,ARMA (Auto-Regressive Moving Average)model of varying tendency for residual gas supply is built.Through ARCH (Auto-Regressive Conditional Heteroskedastic) effect tests of the residual of ARMA model by Lagrange multiplier,the corresponding ARMA-ARCH model is also set up.The varying tendency series are forecasted by using ARMA model and ARMA-ARCH model respectively. Forecasting precision of ARMA model and ARMA -ARCH model is then compared.In this model,probability distribution is used to analyze the residual series in combination with the real production.The results indicate that the proposed model has a well -pleasing forecast performance with a Mean Abs.Percent Error (MAPE )of 4. 1 1%.The case study shows that the model performs well to forecast the varying tendency,which can be used to keep production balance and ensure the pipeline network pressure in a safe range.