海洋通报
海洋通報
해양통보
MARINE SCIENCE BULLETIN
2014年
3期
333-341
,共9页
江佳乐%刘湘南%刘美玲%毕晓庆
江佳樂%劉湘南%劉美玲%畢曉慶
강가악%류상남%류미령%필효경
随机森林%海表盐度%香港海域%ASTER
隨機森林%海錶鹽度%香港海域%ASTER
수궤삼림%해표염도%향항해역%ASTER
Random Forest%Sea Surface Salinity%Hong Kong waters%ASTER
提出了一种基于随机森林反演海盐的算法模型,基于研究海域的实测数据,分析并筛选出与海表盐度敏感性较高的影响因子(总氮、悬浮固体、温度),利用2003-2008年共6期 ASTER 影像数据,从中提取、计算敏感因子的光谱参数,结合相应实测盐度,作为模型的原始数据集,运用 R 语言构建随机森林算法对数据进行训练,将训练得到的随机森林用于海表盐度的预测。结果显示,预测值与实测值之间平均相对误差较小,吻合度高,R2均在0.85以上,多数达0.95以上。研究表明,基于多因子参数的随机森林反演海表盐度是可行且高效的。
提齣瞭一種基于隨機森林反縯海鹽的算法模型,基于研究海域的實測數據,分析併篩選齣與海錶鹽度敏感性較高的影響因子(總氮、懸浮固體、溫度),利用2003-2008年共6期 ASTER 影像數據,從中提取、計算敏感因子的光譜參數,結閤相應實測鹽度,作為模型的原始數據集,運用 R 語言構建隨機森林算法對數據進行訓練,將訓練得到的隨機森林用于海錶鹽度的預測。結果顯示,預測值與實測值之間平均相對誤差較小,吻閤度高,R2均在0.85以上,多數達0.95以上。研究錶明,基于多因子參數的隨機森林反縯海錶鹽度是可行且高效的。
제출료일충기우수궤삼림반연해염적산법모형,기우연구해역적실측수거,분석병사선출여해표염도민감성교고적영향인자(총담、현부고체、온도),이용2003-2008년공6기 ASTER 영상수거,종중제취、계산민감인자적광보삼수,결합상응실측염도,작위모형적원시수거집,운용 R 어언구건수궤삼림산법대수거진행훈련,장훈련득도적수궤삼림용우해표염도적예측。결과현시,예측치여실측치지간평균상대오차교소,문합도고,R2균재0.85이상,다수체0.95이상。연구표명,기우다인자삼수적수궤삼림반연해표염도시가행차고효적。
A method of Sea Surface Salinity (SSS) inversion model based on random forest was proposed. Based on the data of the Hong Kong waters, the three factors (total nitrogen, suspended solid, temperature) with higher sensitivity were chosen. By analyzing the ASTER data from 2003 to 2008, the spectral parameters of the sensitive factors were taken as the model data set. The random forest obtained through the training by using R was applied to the sea surface salinity forecast. The result showed that the mean squared error (MSE) between predicted value and measured value was small, and R2 was all more than 0.85, mostly reached over 0.95. It was concluded that the retrieval model of SSS based on Random Forest with multi-factor was feasible and efficient.