北京农业职业学院学报
北京農業職業學院學報
북경농업직업학원학보
JOURNAL OF BEIJING AGRICULTURE VOCATIONAL COLLEGE
2012年
3期
27-31
,共5页
气孔导度%樱桃%模型%气体交换%小气候%叶片水势%CO2浓度
氣孔導度%櫻桃%模型%氣體交換%小氣候%葉片水勢%CO2濃度
기공도도%앵도%모형%기체교환%소기후%협편수세%CO2농도
Stomata1 Conductance%Cherry%Model%Gas Exchange%Microclimatic%Leaf Water Potential%CO2 Concentration
通过构建樱桃叶片气孔导度模型模拟Gs对小气候因子的响应。试验于2008—2011年在红灯樱桃(Prunus avium L.Hongdeng)园中进行,利用树冠上层叶片气体交换数据拟合了相应参数。结果表明,Gs的变化主要与小气候因子(如光合有效辐射PAR、空气温度Ta、相对湿度RH和CO2浓度等)和自身特性(如叶片水势ψ1)有关,其中ψ1、RH和Ta对Gs的影响较大。G8随ψ1,和RH增加而增加,当ψ1低于-1.5MPa时两者之间相关性尤为显著。当温度增加时Gs呈“钟”形曲线,一般条件下28℃为Gs的最适温度,其最适温度还随PAR和CO2浓度的增加而升高。当PAR低于600μmol·m^-2·s^-1时,Gs随PAR升高而线性增加,超过600μmol·m^-2·s^-1后Gs增加不显著。G8和CO2浓度一般呈负相关关系。模拟表明,不同因子之间存在显著交互作用,其中Ta和PAR,CO2和PAR之间交互作用尤为明显。
通過構建櫻桃葉片氣孔導度模型模擬Gs對小氣候因子的響應。試驗于2008—2011年在紅燈櫻桃(Prunus avium L.Hongdeng)園中進行,利用樹冠上層葉片氣體交換數據擬閤瞭相應參數。結果錶明,Gs的變化主要與小氣候因子(如光閤有效輻射PAR、空氣溫度Ta、相對濕度RH和CO2濃度等)和自身特性(如葉片水勢ψ1)有關,其中ψ1、RH和Ta對Gs的影響較大。G8隨ψ1,和RH增加而增加,噹ψ1低于-1.5MPa時兩者之間相關性尤為顯著。噹溫度增加時Gs呈“鐘”形麯線,一般條件下28℃為Gs的最適溫度,其最適溫度還隨PAR和CO2濃度的增加而升高。噹PAR低于600μmol·m^-2·s^-1時,Gs隨PAR升高而線性增加,超過600μmol·m^-2·s^-1後Gs增加不顯著。G8和CO2濃度一般呈負相關關繫。模擬錶明,不同因子之間存在顯著交互作用,其中Ta和PAR,CO2和PAR之間交互作用尤為明顯。
통과구건앵도협편기공도도모형모의Gs대소기후인자적향응。시험우2008—2011년재홍등앵도(Prunus avium L.Hongdeng)완중진행,이용수관상층협편기체교환수거의합료상응삼수。결과표명,Gs적변화주요여소기후인자(여광합유효복사PAR、공기온도Ta、상대습도RH화CO2농도등)화자신특성(여협편수세ψ1)유관,기중ψ1、RH화Ta대Gs적영향교대。G8수ψ1,화RH증가이증가,당ψ1저우-1.5MPa시량자지간상관성우위현저。당온도증가시Gs정“종”형곡선,일반조건하28℃위Gs적최괄온도,기최괄온도환수PAR화CO2농도적증가이승고。당PAR저우600μmol·m^-2·s^-1시,Gs수PAR승고이선성증가,초과600μmol·m^-2·s^-1후Gs증가불현저。G8화CO2농도일반정부상관관계。모의표명,불동인자지간존재현저교호작용,기중Ta화PAR,CO2화PAR지간교호작용우위명현。
A coupled model of gas exchange was developed which was able to systematically simulate the diurnal courses of Gs and the response of Gs to microclimatic factors. The experiment was conducted in a Hongdeng cherry (Prunus avium L. Hongdeng) orchard. The parameters of the model were tested by the data observed in upper canopy from 2008 to 2011 during the growing seasons.The simulation showed that Gs depends on plant characteristics and microclimatic factors including leaf water potential (41), photosynthetically active radiation (PAR), air temperature (Ta), relative humidity (RH) and air CO2 concentration. The results showed that Gs was mostly affected by ψ1, RH and Ta. Gs increased with the increase of ψ1 and RH, especially when ψ1 was below -1.5 MPa. As Ta increased, the change of Gs followed a bell-shaped curve. 28 ℃ was the optimum Ta for Gs in normal conditions. It should be noted that the optimum Ta for Gs shifted to a higher level as PAR or CO2 increased. There existed a positive linear relationship between Gs and PAR when PAR was below 600μmol·m^-2·s^-1 and Gs did not show a significant increase when PAR increased from 600 to 1800 μmol·m^-2·s^-1 Generally there was a negative correlation between CO2 concentration and Gs. Strong interactions existed among the various microclimatic factors to Gs, especially between Ta and PAR, PAR and CO2.