湖北民族学院学报:自然科学版
湖北民族學院學報:自然科學版
호북민족학원학보:자연과학판
Journal of Hubei Institute for Nationalities(Natural Sciences)
2012年
2期
182-185
,共4页
随机环境马氏链%熵%Hausdorff维数%填充维数
隨機環境馬氏鏈%熵%Hausdorff維數%填充維數
수궤배경마씨련%적%Hausdorff유수%전충유수
Markov chains in random environment%entropy%Hausdorff dimension%packing dimension
在随机环境中马氏链一般理论的研究中,通常要用到随机环境中马氏链与马氏双链间的相互关系.在此基础上。主要探讨了随机环境中马氏链下熵,维数的相关定义,并借助此关系讨论随机环境马氏链下有关熵的不等式的极值问题,获得了相关的结论.
在隨機環境中馬氏鏈一般理論的研究中,通常要用到隨機環境中馬氏鏈與馬氏雙鏈間的相互關繫.在此基礎上。主要探討瞭隨機環境中馬氏鏈下熵,維數的相關定義,併藉助此關繫討論隨機環境馬氏鏈下有關熵的不等式的極值問題,穫得瞭相關的結論.
재수궤배경중마씨련일반이론적연구중,통상요용도수궤배경중마씨련여마씨쌍련간적상호관계.재차기출상。주요탐토료수궤배경중마씨련하적,유수적상관정의,병차조차관계토론수궤배경마씨련하유관적적불등식적겁치문제,획득료상관적결론.
As branches of stochastic process, Markov chains in random environments were developed in 1970s. They have deep realistic background and intensive application. In the study of Markov chains in random environments, we often make use of the relations of Markov chains in random environments and joint Markov chains. Based on the previous works, we study relations among Markov chains in random en- vironments, joint Markov chains and original course. In this paper, on the basis of previous work, we mainly discuss the Markov chains in random environments, entropy, dimension and the relevant definition. This relationship is used to discuss the inequality extreme value problem, and a conclusion is obtained.