计算机工程
計算機工程
계산궤공정
COMPUTER ENGINEERING
2014年
3期
201-204
,共4页
二维离散小波变换%特征融合%行人检测%WLD特征%LBP特征
二維離散小波變換%特徵融閤%行人檢測%WLD特徵%LBP特徵
이유리산소파변환%특정융합%행인검측%WLD특정%LBP특정
2-D discrete wavelet transform%feature fusion%pedestrian detection%Weber Local Descriptor(WLD)%Local Binary Pattern(LBP)
为提高行人检测的识别率,提出一种基于改进型韦伯局部描述子(WLD)和局部二元模式(LBP)的特征融合方法进行行人检测。对图像进行二维离散Haar小波变换得到4个不同频率的子图像,对其中1个低频部分提取WLD特征,对3个高频部分提取LBP特征,并将各个子图像的特征串接为1个向量,得到WLD-LBP特征。在INRIA Person数据集上利用SVM作为分类器进行测试,实验结果表明,与单独WLD特征、梯度方向直方图(HOG)特征、PHOG特征以及HOG-LBP特征融合方法相比,该方法的识别率最高,可达98.1%,并且对光照和噪声也有较好的鲁棒性。
為提高行人檢測的識彆率,提齣一種基于改進型韋伯跼部描述子(WLD)和跼部二元模式(LBP)的特徵融閤方法進行行人檢測。對圖像進行二維離散Haar小波變換得到4箇不同頻率的子圖像,對其中1箇低頻部分提取WLD特徵,對3箇高頻部分提取LBP特徵,併將各箇子圖像的特徵串接為1箇嚮量,得到WLD-LBP特徵。在INRIA Person數據集上利用SVM作為分類器進行測試,實驗結果錶明,與單獨WLD特徵、梯度方嚮直方圖(HOG)特徵、PHOG特徵以及HOG-LBP特徵融閤方法相比,該方法的識彆率最高,可達98.1%,併且對光照和譟聲也有較好的魯棒性。
위제고행인검측적식별솔,제출일충기우개진형위백국부묘술자(WLD)화국부이원모식(LBP)적특정융합방법진행행인검측。대도상진행이유리산Haar소파변환득도4개불동빈솔적자도상,대기중1개저빈부분제취WLD특정,대3개고빈부분제취LBP특정,병장각개자도상적특정천접위1개향량,득도WLD-LBP특정。재INRIA Person수거집상이용SVM작위분류기진행측시,실험결과표명,여단독WLD특정、제도방향직방도(HOG)특정、PHOG특정이급HOG-LBP특정융합방법상비,해방법적식별솔최고,가체98.1%,병차대광조화조성야유교호적로봉성。
This paper presents a feature fusion method(WLD-LBP) based on an improved Weber Local Descriptor(WLD) and Local Binary Pattern(LBP) through a two-dimensional discrete haar wavelet transform. The algorithm starts with a two-dimensional discrete haar wavelet for the image so as to obtain the subimages of four different frequencies. Making full use of the WLD and LBP, we extract the WLD characteristics of the low frequency part, and LBP features of the other three high-frequency portion, and then a vector consisted with the characteristics of the image is produced which we called WLD-LBP characteristics. Five groups of test experiments were conducted on INRIA Person databases using SVM as classifier,comparing with the characristics of WLD, Histogam of Oriented Gradient(HOG), PHOG and feature fusion of HOG-LBP,respectively. The results demonstrate the effectiveness with the highest recofnition rate up to 98.1%and robustness to illumination and noise of the proposed method.