计算机科学与探索
計算機科學與探索
계산궤과학여탐색
JOURNAL OF FRONTIERS OF COMPUTER SCIENCE & TECHNOLOGY
2014年
4期
473-482
,共10页
帝国竞争算法%早熟收敛%微分进化%克隆进化
帝國競爭算法%早熟收斂%微分進化%剋隆進化
제국경쟁산법%조숙수렴%미분진화%극륭진화
imperialist competitive algorithm%premature convergence%differential evolution%clone evolution
为了改善帝国竞争算法(imperialist competitive algorithm,ICA)易早熟收敛、精度低等缺点,提出了两种基于生物进化的改进ICA算法。针对殖民地改革算子可能使势力较强的殖民地丢失,导致寻优精度降低的不足,引入了一种微分进化算子,利用殖民地之间的信息交互产生新的殖民地,在增强群体多样性的同时保留了优秀个体。另外,针对帝国之间缺乏有效的信息交互这一情况,引入了克隆进化算子,对势力较强的国家进行克隆繁殖,并经过克隆群体的高频变异和随机交叉,选择势力较强的国家取代势力较弱的国家,从而有效地引导算法向最优解方向搜索。将算法应用于6个基准函数和6个经典复合函数优化问题,并与其他ICA改进算法进行比较,结果表明,基于生物进化的ICA算法在收敛精度、收敛速度及稳定性上有显著提高。
為瞭改善帝國競爭算法(imperialist competitive algorithm,ICA)易早熟收斂、精度低等缺點,提齣瞭兩種基于生物進化的改進ICA算法。針對殖民地改革算子可能使勢力較彊的殖民地丟失,導緻尋優精度降低的不足,引入瞭一種微分進化算子,利用殖民地之間的信息交互產生新的殖民地,在增彊群體多樣性的同時保留瞭優秀箇體。另外,針對帝國之間缺乏有效的信息交互這一情況,引入瞭剋隆進化算子,對勢力較彊的國傢進行剋隆繁殖,併經過剋隆群體的高頻變異和隨機交扠,選擇勢力較彊的國傢取代勢力較弱的國傢,從而有效地引導算法嚮最優解方嚮搜索。將算法應用于6箇基準函數和6箇經典複閤函數優化問題,併與其他ICA改進算法進行比較,結果錶明,基于生物進化的ICA算法在收斂精度、收斂速度及穩定性上有顯著提高。
위료개선제국경쟁산법(imperialist competitive algorithm,ICA)역조숙수렴、정도저등결점,제출료량충기우생물진화적개진ICA산법。침대식민지개혁산자가능사세력교강적식민지주실,도치심우정도강저적불족,인입료일충미분진화산자,이용식민지지간적신식교호산생신적식민지,재증강군체다양성적동시보류료우수개체。령외,침대제국지간결핍유효적신식교호저일정황,인입료극륭진화산자,대세력교강적국가진행극륭번식,병경과극륭군체적고빈변이화수궤교차,선택세력교강적국가취대세력교약적국가,종이유효지인도산법향최우해방향수색。장산법응용우6개기준함수화6개경전복합함수우화문제,병여기타ICA개진산법진행비교,결과표명,기우생물진화적ICA산법재수렴정도、수렴속도급은정성상유현저제고。
To deal with the problem of premature convergence and low precision of the traditional imperialist competi-tive algorithm (ICA), this paper proposes two improved ICAs based on biological evolution. In the traditional ICA, colony revolution will lead to low precision because the operator may make the strong colony lost. To overcome this shortcoming, a differential evolution operator is introduced, which makes use of the interaction among colonies to produce new colonies. The operator will enhance the population diversity and keep the excellent individuals at the same time. Furthermore, on account of strengthening the interaction among empires, a clone evolution operator is introduced, which includes the following steps:clonal reproduction of the stronger countries;high frequency variation and random crossover of clonal populations; the stronger countries take place of the weaker ones. The operator can guide the search for global optimum efficiently. The proposed methods are applied to six benchmark functions and six typical complex function optimization problems, and the performance comparison of the proposed methods with other ICAs is experimented. The results indicate that the proposed methods can significantly speed up the convergence and improve the precision and stability.