光谱学与光谱分析
光譜學與光譜分析
광보학여광보분석
SPECTROSCOPY AND SPECTRAL ANALYSIS
2014年
4期
1109-1113
,共5页
刘小珍%熊莉萍%刘小舟%陈捷%罗一凡%孙颖
劉小珍%熊莉萍%劉小舟%陳捷%囉一凡%孫穎
류소진%웅리평%류소주%진첩%라일범%손영
电沉积%镀层%能谱%X衍射谱
電沉積%鍍層%能譜%X衍射譜
전침적%도층%능보%X연사보
Electrodeposition%Coating%XRD%EDAX
采用电沉积法在镍合金表面制备钼镍镀层。研究钼镍镀层的硬度、磨损质量和摩擦系数、热膨胀等性能。分别用发射光谱法、能谱法、扫描电镜法和X衍射法等对钼镍镀层进行表征。在镍合金表面镀上一层钼镍镀层,可使其的硬度和耐磨性大幅度提高并减小磨擦系数,钼镍镀层的硬度为518HV,比镍合金的硬度(300HV)提高了72.67%;钼镍镀层的磨损质量是镍合金的磨损质量的1/1.94;镍合金和钼镍镀层的磨擦系数分别为0.640和0.559。镍合金的物理热膨胀曲线在100~120℃温度范围和570~640℃范围形成了2个峰,镍合金+钼镍镀层的物理热膨胀曲线在570~640℃范围形成了1个峰。在570~640℃范围可明显改善其热膨胀,镍合金+钼镍镀层的物理热膨胀曲线在570~640℃范围形成的峰远比镍合金的物理热膨胀曲线在570~640℃范围形成的峰小,可能是因为钼进入到镍的晶格中,抑制了镍在570~640℃范围发生晶格转变(bcc→fcc)所致。镍合金+钼镍镀层的物理热膨胀曲线在595~625℃范围形成的小峰,可能是由于MoNi4和MoNi由半晶型结构转变为晶型结构所致。
採用電沉積法在鎳閤金錶麵製備鉬鎳鍍層。研究鉬鎳鍍層的硬度、磨損質量和摩抆繫數、熱膨脹等性能。分彆用髮射光譜法、能譜法、掃描電鏡法和X衍射法等對鉬鎳鍍層進行錶徵。在鎳閤金錶麵鍍上一層鉬鎳鍍層,可使其的硬度和耐磨性大幅度提高併減小磨抆繫數,鉬鎳鍍層的硬度為518HV,比鎳閤金的硬度(300HV)提高瞭72.67%;鉬鎳鍍層的磨損質量是鎳閤金的磨損質量的1/1.94;鎳閤金和鉬鎳鍍層的磨抆繫數分彆為0.640和0.559。鎳閤金的物理熱膨脹麯線在100~120℃溫度範圍和570~640℃範圍形成瞭2箇峰,鎳閤金+鉬鎳鍍層的物理熱膨脹麯線在570~640℃範圍形成瞭1箇峰。在570~640℃範圍可明顯改善其熱膨脹,鎳閤金+鉬鎳鍍層的物理熱膨脹麯線在570~640℃範圍形成的峰遠比鎳閤金的物理熱膨脹麯線在570~640℃範圍形成的峰小,可能是因為鉬進入到鎳的晶格中,抑製瞭鎳在570~640℃範圍髮生晶格轉變(bcc→fcc)所緻。鎳閤金+鉬鎳鍍層的物理熱膨脹麯線在595~625℃範圍形成的小峰,可能是由于MoNi4和MoNi由半晶型結構轉變為晶型結構所緻。
채용전침적법재얼합금표면제비목얼도층。연구목얼도층적경도、마손질량화마찰계수、열팽창등성능。분별용발사광보법、능보법、소묘전경법화X연사법등대목얼도층진행표정。재얼합금표면도상일층목얼도층,가사기적경도화내마성대폭도제고병감소마찰계수,목얼도층적경도위518HV,비얼합금적경도(300HV)제고료72.67%;목얼도층적마손질량시얼합금적마손질량적1/1.94;얼합금화목얼도층적마찰계수분별위0.640화0.559。얼합금적물리열팽창곡선재100~120℃온도범위화570~640℃범위형성료2개봉,얼합금+목얼도층적물리열팽창곡선재570~640℃범위형성료1개봉。재570~640℃범위가명현개선기열팽창,얼합금+목얼도층적물리열팽창곡선재570~640℃범위형성적봉원비얼합금적물리열팽창곡선재570~640℃범위형성적봉소,가능시인위목진입도얼적정격중,억제료얼재570~640℃범위발생정격전변(bcc→fcc)소치。얼합금+목얼도층적물리열팽창곡선재595~625℃범위형성적소봉,가능시유우MoNi4화MoNi유반정형결구전변위정형결구소치。
Mo-Ni coatings were prepared on Ni alloy by electrodeposition method .The properties of micro-hardness ,wear weight loss and friction coefficients ,and thermal expansion of the coatings were investigated , respectively .Mo-Ni coatings were characterized with inductively coupled plasma-atomic emission spectroscopy (ICP-AES) ,energy-dispersive analyses of X-ray (EDAX ) ,scanning electron microcopy (SEM ) ,and X-ray diffraction (XRD) techniques ,respectively .Mo-Ni coating shows higher microhardness ,lower wear weight loss and friction coefficient compared with those of Ni alloy .The microhardness of Mo-Ni coating is as high as 518 HV ,which is 72.67% higher than that of the Ni alloy (300 HV) .The wear weight losses of Mo-Ni coat-ing is 1.94 times lower than that of Ni alloy .The friction coefficient of Ni alloy and Mo-Ni coating are 0.640 and 0.559 respectively .The physical thermal expansion curve of Ni alloy has two the peaks in the ranges of 100~120 and 570~640 ℃ respectively ;and that of Ni alloy+Mo-Ni coating has one the peaks in the ranges of 570~640 ℃ .The peak of the physical thermal expansion curve of Ni alloy+Mo-Ni coating in the ranges of 570~640 ℃ is much smaller than that of the Ni alloy .Because the part of nickel was replaced by molybdenum in the Ni lattice ,molybdenum decreases the lattices transformation of nickel (bcc→fcc) .The reason for the formation of the small peak of the physical thermal expansion curve of Ni alloy +Mo-Ni coating in the ranges of 595~625 ℃ is the changes of MoNi4 and MoNi from the semi-crystalline structure to the crystalline structure respectively .