兰州大学学报(自然科学版)
蘭州大學學報(自然科學版)
란주대학학보(자연과학판)
JOURNAL OF LANZHOU UNIVERSITY(NATURAL SCIENCES)
2014年
1期
128-135
,共8页
组合混沌策略自适应量子微粒群算法%非线性系统%Volterra级数%系统辨识
組閤混沌策略自適應量子微粒群算法%非線性繫統%Volterra級數%繫統辨識
조합혼돈책략자괄응양자미립군산법%비선성계통%Volterra급수%계통변식
adaptive quantum-behaved particle swarm optimization with the combination of chaotic strategy (CCSAQPSO)%nonlinear system%Volterra series%system identification
针对非线性Volterra泛函级数的参数辨识问题,提出了一种基于组合混沌策略自适应量子微粒群算法(CCSAQPSO算法)的Volterra时域核辨识方法。该方法在量子微粒群算法(QPSO)的基础上,采用混沌策略分两个阶段对QPSO进行优化,在初始化时以混沌序列初始化种群,在搜索过程中则引入混沌变异机制,利用混沌变异算子空间遍历特性对个体进行变异操作,同时按照各微粒适应度的优劣程度对其进化过程中的收缩扩张系数进行自适应调节,有效避免了早熟收敛现象的发生,提高了算法的全局寻优能力,保证了算法的准确性和精度。最后将该Volterra核辨识方法与基于标准微粒群算法(PSO算法)和QPSO算法的Volterra核辨识方法进行了对比分析。仿真结果表明,提出的方法具有参数辨识精度高、抗噪声能力强等优点,且在全局优化能力和快速收敛能力上都有较大提高。
針對非線性Volterra汎函級數的參數辨識問題,提齣瞭一種基于組閤混沌策略自適應量子微粒群算法(CCSAQPSO算法)的Volterra時域覈辨識方法。該方法在量子微粒群算法(QPSO)的基礎上,採用混沌策略分兩箇階段對QPSO進行優化,在初始化時以混沌序列初始化種群,在搜索過程中則引入混沌變異機製,利用混沌變異算子空間遍歷特性對箇體進行變異操作,同時按照各微粒適應度的優劣程度對其進化過程中的收縮擴張繫數進行自適應調節,有效避免瞭早熟收斂現象的髮生,提高瞭算法的全跼尋優能力,保證瞭算法的準確性和精度。最後將該Volterra覈辨識方法與基于標準微粒群算法(PSO算法)和QPSO算法的Volterra覈辨識方法進行瞭對比分析。倣真結果錶明,提齣的方法具有參數辨識精度高、抗譟聲能力彊等優點,且在全跼優化能力和快速收斂能力上都有較大提高。
침대비선성Volterra범함급수적삼수변식문제,제출료일충기우조합혼돈책략자괄응양자미립군산법(CCSAQPSO산법)적Volterra시역핵변식방법。해방법재양자미립군산법(QPSO)적기출상,채용혼돈책략분량개계단대QPSO진행우화,재초시화시이혼돈서렬초시화충군,재수색과정중칙인입혼돈변이궤제,이용혼돈변이산자공간편력특성대개체진행변이조작,동시안조각미립괄응도적우렬정도대기진화과정중적수축확장계수진행자괄응조절,유효피면료조숙수렴현상적발생,제고료산법적전국심우능력,보증료산법적준학성화정도。최후장해Volterra핵변식방법여기우표준미립군산법(PSO산법)화QPSO산법적Volterra핵변식방법진행료대비분석。방진결과표명,제출적방법구유삼수변식정도고、항조성능력강등우점,차재전국우화능력화쾌속수렴능력상도유교대제고。
A Volterra kernel identification method based on Adaptive Quantum-behaved Particle Swarm Opti-mization with the combination of the chaotic strategy (CCSAQPSO) was proposed for parameter identification of nonlinear Volterra series. The chaotic strategy was adopted to optimize the Quantum-behaved Particle Swarm Optimization (QPSO) algorithm in the two stages of search process, the population was initialized with chaotic sequences during initialization, and chaos mutation mechanism was used in the search process. The ergodicity of the chaotic mutation operator was used to finish the mutation operation of the selected individual. At the same time, the contraction expansion coefficient of the algorithm was adjusted adaptively in the evolutionary process according to the fitness of each particle, so that the premature convergence was efficiently avoided, the global convergence ability of the algorithm was improved, and the accuracy and precision of the algorithm was guaranteed. The proposed method was compared with Volterra kernel identification methods based on standard Particle Swarm Optimization (PSO) and QPSO, and the simulation results showed that the proposed method has some advantages, such as high identification accuracy, good anti-noise performance, etc. The global conver-gence ability and the convergence speed of the proposed method were improved greatly.