西华师范大学学报:自然科学版
西華師範大學學報:自然科學版
서화사범대학학보:자연과학판
Journal of China West Normal University:Natural Science Edition
2012年
2期
196-198,217
,共4页
平方数%Pell方程%正整数解
平方數%Pell方程%正整數解
평방수%Pell방정%정정수해
square%Pell' s equation%Positive integer solution
设n,p为正整数,k和s〉1为奇数,(ks)2-(s2-1)p2为素数,当klp或(ks,(ks)2-(s2-1)p2)=1时,得到使p2+4n(n+1)s2k2/s2-1是平方数的正整数n所满足的条件.
設n,p為正整數,k和s〉1為奇數,(ks)2-(s2-1)p2為素數,噹klp或(ks,(ks)2-(s2-1)p2)=1時,得到使p2+4n(n+1)s2k2/s2-1是平方數的正整數n所滿足的條件.
설n,p위정정수,k화s〉1위기수,(ks)2-(s2-1)p2위소수,당klp혹(ks,(ks)2-(s2-1)p2)=1시,득도사p2+4n(n+1)s2k2/s2-1시평방수적정정수n소만족적조건.
Let nand p be positive integers, let s be a positive odd integer with s 〉 1, and let k be a positive odd integer, Let (ks) 2 - ( s2- 1 )p2 be a prime, when k is divisible by p or ( ks, (ks) 2 - ( s2 - 1 ) p2 ) = 1, In this paper, all positive integers n which makes the form p2+4n(n+1)s2k2/s2-1 to be a square were given.