中国农学通报
中國農學通報
중국농학통보
CHINESE AGRICULTURAL SCIENCE BULLETIN
2013年
12期
174-178
,共5页
黄珍珠%杜尧东%王华%黄俊
黃珍珠%杜堯東%王華%黃俊
황진주%두요동%왕화%황준
稻飞虱%地面气象因子%关键影响时段%预测模型%广东省
稻飛虱%地麵氣象因子%關鍵影響時段%預測模型%廣東省
도비슬%지면기상인자%관건영향시단%예측모형%광동성
rice planthopper%surface meteorological factors%key influencing period%predicting model%Guangdong Province
为明确影响广东省稻飞虱发生的关键气象因子和关键时段,为地方政府及相关部门提供稻飞虱危害预测预警。采用相关分析法对广东省1992—2009年水稻稻飞虱发生面积率与同期地面气象因子进行研究,采用两段最小二乘法、曲线回归方法分别建立6、9月份广东省稻飞虱发生面积率长期预测模型。结果表明:稻飞虱发生的关键时段是6、9月份,关键因子是6月份温雨系数、大雨日数、平均风速<5 m/s的日数;9月份平均气温、平均风速<5 m/s的日数。稻飞虱发生等级模型预报准确率为83%,2010年发生等级预报结果正确,预报效果较好,能够满足业务服务的需要。
為明確影響廣東省稻飛虱髮生的關鍵氣象因子和關鍵時段,為地方政府及相關部門提供稻飛虱危害預測預警。採用相關分析法對廣東省1992—2009年水稻稻飛虱髮生麵積率與同期地麵氣象因子進行研究,採用兩段最小二乘法、麯線迴歸方法分彆建立6、9月份廣東省稻飛虱髮生麵積率長期預測模型。結果錶明:稻飛虱髮生的關鍵時段是6、9月份,關鍵因子是6月份溫雨繫數、大雨日數、平均風速<5 m/s的日數;9月份平均氣溫、平均風速<5 m/s的日數。稻飛虱髮生等級模型預報準確率為83%,2010年髮生等級預報結果正確,預報效果較好,能夠滿足業務服務的需要。
위명학영향광동성도비슬발생적관건기상인자화관건시단,위지방정부급상관부문제공도비슬위해예측예경。채용상관분석법대광동성1992—2009년수도도비슬발생면적솔여동기지면기상인자진행연구,채용량단최소이승법、곡선회귀방법분별건립6、9월빈광동성도비슬발생면적솔장기예측모형。결과표명:도비슬발생적관건시단시6、9월빈,관건인자시6월빈온우계수、대우일수、평균풍속<5 m/s적일수;9월빈평균기온、평균풍속<5 m/s적일수。도비슬발생등급모형예보준학솔위83%,2010년발생등급예보결과정학,예보효과교호,능구만족업무복무적수요。
To ascertain the key meteorological factors and their periods of influencing rice planthopper occurrence levels and provide early warning for local government and related departments in Guangdong Province, the relation between the rice planthopper occurrence areas and corresponding surface meteorological data from 1992 to 2009 was researched by correlation analysis method, and the long-term predicting models of rice planthopper occurrence levels were constructed by least-squares method and curve regression in June and September. The results indicated that June and September were the key periods of rice planthopper occurrence. Key meteorological factors included the ratio of precipitation to air temperature, heavy rain days, days of average wind speed<5 m/s in June, and average temperature, days of average wind speed<5 m/s in September. The accuracy of rice planthopper occurrence level models was 83%, and prediction of rice planthopper occurrence level was correct in 2010. The prediction models had high prediction accuracy and could satisfy the needs of operational services.